diff --git a/train.py b/train.py index 685b6317..bbbfec05 100644 --- a/train.py +++ b/train.py @@ -11,10 +11,7 @@ from models import * from utils.datasets import * from utils.utils import * -# 0.0945 0.279 0.114 0.131 25 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320 -# 0.149 0.241 0.126 0.156 6.85 1.008 1.421 0.07989 16.94 6.215 10.61 4.272 0.251 0.001 -4 0.9 0.0005 320 giou -# 0.111 0.27 0.132 0.131 3.96 1.276 0.3156 0.1425 21.21 6.224 11.59 8.83 0.376 0.001 -4 0.9 0.0005 320 -# 0.114 0.287 0.144 0.132 7.1 1.666 4.046 0.1364 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False +# 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False hyp = {'giou': 1.666, # giou loss gain 'xy': 4.062, # xy loss gain 'wh': 0.1845, # wh loss gain @@ -114,12 +111,11 @@ def train( # plt.savefig('LR.png', dpi=300) # Dataset - rectangular_training = False dataset = LoadImagesAndLabels(train_path, img_size, batch_size, augment=True, - rect=rectangular_training) + rect=opt.rect) # rectangular training # Initialize distributed training if torch.cuda.device_count() > 1: @@ -135,7 +131,7 @@ def train( dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=opt.num_workers, - shuffle=not rectangular_training, # Shuffle=True unless rectangular training is used + shuffle=not opt.rect, # Shuffle=True unless rectangular training is used pin_memory=True, collate_fn=dataset.collate_fn) @@ -301,6 +297,7 @@ if __name__ == '__main__': parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path') parser.add_argument('--single-scale', action='store_true', help='train at fixed size (no multi-scale)') parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)') + parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', action='store_true', help='resume training flag') parser.add_argument('--transfer', action='store_true', help='transfer learning flag') parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')