updates
This commit is contained in:
parent
8944db80b9
commit
2769d79d05
15
models.py
15
models.py
|
@ -130,8 +130,9 @@ class YOLOLayer(nn.Module):
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
if targets is not None:
|
if targets is not None:
|
||||||
BCEWithLogitsLoss = nn.BCEWithLogitsLoss()
|
BCEWithLogitsLoss1 = nn.BCEWithLogitsLoss(size_average=False)
|
||||||
MSELoss = nn.MSELoss() # version 0.4.0
|
BCEWithLogitsLoss2 = nn.BCEWithLogitsLoss(size_average=True)
|
||||||
|
MSELoss = nn.MSELoss(size_average=False) # version 0.4.0
|
||||||
CrossEntropyLoss = nn.CrossEntropyLoss()
|
CrossEntropyLoss = nn.CrossEntropyLoss()
|
||||||
|
|
||||||
if requestPrecision:
|
if requestPrecision:
|
||||||
|
@ -150,21 +151,21 @@ class YOLOLayer(nn.Module):
|
||||||
tx, ty, tw, th, mask, tcls = tx.cuda(), ty.cuda(), tw.cuda(), th.cuda(), mask.cuda(), tcls.cuda()
|
tx, ty, tw, th, mask, tcls = tx.cuda(), ty.cuda(), tw.cuda(), th.cuda(), mask.cuda(), tcls.cuda()
|
||||||
|
|
||||||
# Mask outputs to ignore non-existing objects (but keep confidence predictions)
|
# Mask outputs to ignore non-existing objects (but keep confidence predictions)
|
||||||
nM = mask.sum()
|
nM = mask.sum().float()
|
||||||
nGT = sum([len(x) for x in targets])
|
nGT = sum([len(x) for x in targets])
|
||||||
if nM > 0:
|
if nM > 0:
|
||||||
lx = 5 * MSELoss(x[mask], tx[mask])
|
lx = 5 * MSELoss(x[mask], tx[mask])
|
||||||
ly = 5 * MSELoss(y[mask], ty[mask])
|
ly = 5 * MSELoss(y[mask], ty[mask])
|
||||||
lw = 5 * MSELoss(w[mask], tw[mask])
|
lw = 5 * MSELoss(w[mask], tw[mask])
|
||||||
lh = 5 * MSELoss(h[mask], th[mask])
|
lh = 5 * MSELoss(h[mask], th[mask])
|
||||||
lconf = 1.5 * BCEWithLogitsLoss(pred_conf[mask], mask[mask].float())
|
lconf = 1.5 * BCEWithLogitsLoss1(pred_conf[mask], mask[mask].float())
|
||||||
|
|
||||||
lcls = 0.5 * CrossEntropyLoss(pred_cls[mask], torch.argmax(tcls, 1))
|
lcls = nM * CrossEntropyLoss(pred_cls[mask], torch.argmax(tcls, 1))
|
||||||
# lcls = BCEWithLogitsLoss(pred_cls[mask], tcls.float())
|
# lcls = BCEWithLogitsLoss1(pred_cls[mask], tcls.float())
|
||||||
else:
|
else:
|
||||||
lx, ly, lw, lh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
|
lx, ly, lw, lh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
|
||||||
|
|
||||||
lconf += BCEWithLogitsLoss(pred_conf[~mask], mask[~mask].float())
|
lconf += nM * BCEWithLogitsLoss2(pred_conf[~mask], mask[~mask].float())
|
||||||
|
|
||||||
loss = lx + ly + lw + lh + lconf + lcls
|
loss = lx + ly + lw + lh + lconf + lcls
|
||||||
i = torch.sigmoid(pred_conf[~mask]) > 0.99
|
i = torch.sigmoid(pred_conf[~mask]) > 0.99
|
||||||
|
|
Loading…
Reference in New Issue