diff --git a/utils/utils.py b/utils/utils.py index 51d4127b..74663bb2 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -633,7 +633,7 @@ def get_yolo_layers(model): def print_model_biases(model): # prints the bias neurons preceding each yolo layer - print('\nModel Bias Summary:') + print('\nModel Bias Summary: %8s%18s%18s%18s' % ('layer', 'regression', 'objectness', 'classification')) multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for l in model.yolo_layers: # print pretrained biases if multi_gpu: @@ -642,9 +642,9 @@ def print_model_biases(model): else: na = model.module_list[l].na b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 - print('layer %3g regression: %5.2f+/-%-5.2f ' % (l, b[:, :4].mean(), b[:, :4].std()), - 'objectness: %5.2f+/-%-5.2f ' % (b[:, 4].mean(), b[:, 4].std()), - 'classification: %5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std())) + print(' ' * 20 + '%8g %18s%18s%18s' % (l, '%5.2f+/-%-5.2f' % (b[:, :4].mean(), b[:, :4].std()), + '%5.2f+/-%-5.2f' % (b[:, 4].mean(), b[:, 4].std()), + '%5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std()))) def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_optimizer()