updated --augment sizes and results
This commit is contained in:
parent
4fa3fd2df3
commit
1a511d2906
26
README.md
26
README.md
|
@ -137,20 +137,20 @@ Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.00
|
||||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
||||||
|
|
||||||
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
|
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
|
||||||
all 5e+03 3.51e+04 0.373 0.744 0.637 0.491
|
all 5e+03 3.51e+04 0.375 0.743 0.639 0.493
|
||||||
|
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.454
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.455
|
||||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.644
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.646
|
||||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.497
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.496
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.504
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.363
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.362
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.597
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.668
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.666
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.502
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.491
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.724
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.805
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.808
|
||||||
|
|
||||||
Speed: 21.3/3.0/24.4 ms inference/NMS/total per 640x640 image at batch-size 16
|
Speed: 21.3/3.0/24.4 ms inference/NMS/total per 640x640 image at batch-size 16
|
||||||
```
|
```
|
||||||
|
|
|
@ -241,8 +241,8 @@ class Darknet(nn.Module):
|
||||||
if augment: # https://github.com/ultralytics/yolov3/issues/931
|
if augment: # https://github.com/ultralytics/yolov3/issues/931
|
||||||
nb = x.shape[0] # batch size
|
nb = x.shape[0] # batch size
|
||||||
x = torch.cat((x,
|
x = torch.cat((x,
|
||||||
torch_utils.scale_img(x.flip(3), 0.9), # flip-lr and scale
|
torch_utils.scale_img(x.flip(3), 0.83), # flip-lr and scale
|
||||||
torch_utils.scale_img(x, 0.7), # scale
|
torch_utils.scale_img(x, 0.67), # scale
|
||||||
), 0)
|
), 0)
|
||||||
|
|
||||||
for i, module in enumerate(self.module_list):
|
for i, module in enumerate(self.module_list):
|
||||||
|
@ -273,9 +273,9 @@ class Darknet(nn.Module):
|
||||||
x = torch.cat(x, 1) # cat yolo outputs
|
x = torch.cat(x, 1) # cat yolo outputs
|
||||||
if augment: # de-augment results
|
if augment: # de-augment results
|
||||||
x = torch.split(x, nb, dim=0)
|
x = torch.split(x, nb, dim=0)
|
||||||
x[1][..., :4] /= 0.9 # scale
|
x[1][..., :4] /= 0.83 # scale
|
||||||
x[1][..., 0] = img_size[1] - x[1][..., 0] # flip lr
|
x[1][..., 0] = img_size[1] - x[1][..., 0] # flip lr
|
||||||
x[2][..., :4] /= 0.7 # scale
|
x[2][..., :4] /= 0.67 # scale
|
||||||
x = torch.cat(x, 1)
|
x = torch.cat(x, 1)
|
||||||
return x, p
|
return x, p
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue