update datasets.py
This commit is contained in:
parent
dc06836968
commit
183e3833d2
|
@ -18,7 +18,7 @@ from utils.utils import xyxy2xywh, xywh2xyxy
|
||||||
|
|
||||||
help_url = 'https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data'
|
help_url = 'https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data'
|
||||||
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
|
||||||
vid_formats = ['.mov', '.avi', '.mp4']
|
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
|
||||||
|
|
||||||
# Get orientation exif tag
|
# Get orientation exif tag
|
||||||
for orientation in ExifTags.TAGS.keys():
|
for orientation in ExifTags.TAGS.keys():
|
||||||
|
@ -63,7 +63,8 @@ class LoadImages: # for inference
|
||||||
self.new_video(videos[0]) # new video
|
self.new_video(videos[0]) # new video
|
||||||
else:
|
else:
|
||||||
self.cap = None
|
self.cap = None
|
||||||
assert self.nF > 0, 'No images or videos found in ' + path
|
assert self.nF > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
||||||
|
(path, img_formats, vid_formats)
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
self.count = 0
|
self.count = 0
|
||||||
|
@ -257,7 +258,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
||||||
|
|
||||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||||
cache_images=False, single_cls=False):
|
cache_images=False, single_cls=False, pad=0.0):
|
||||||
try:
|
try:
|
||||||
path = str(Path(path)) # os-agnostic
|
path = str(Path(path)) # os-agnostic
|
||||||
parent = str(Path(path).parent) + os.sep
|
parent = str(Path(path).parent) + os.sep
|
||||||
|
@ -291,20 +292,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
|
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
|
||||||
for x in self.img_files]
|
for x in self.img_files]
|
||||||
|
|
||||||
|
# Read image shapes (wh)
|
||||||
|
sp = path.replace('.txt', '') + '.shapes' # shapefile path
|
||||||
|
try:
|
||||||
|
with open(sp, 'r') as f: # read existing shapefile
|
||||||
|
s = [x.split() for x in f.read().splitlines()]
|
||||||
|
assert len(s) == n, 'Shapefile out of sync'
|
||||||
|
except:
|
||||||
|
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
|
||||||
|
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
|
||||||
|
|
||||||
|
self.shapes = np.array(s, dtype=np.float64)
|
||||||
|
|
||||||
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
||||||
if self.rect:
|
if self.rect:
|
||||||
# Read image shapes (wh)
|
|
||||||
sp = path.replace('.txt', '') + '.shapes' # shapefile path
|
|
||||||
try:
|
|
||||||
with open(sp, 'r') as f: # read existing shapefile
|
|
||||||
s = [x.split() for x in f.read().splitlines()]
|
|
||||||
assert len(s) == n, 'Shapefile out of sync'
|
|
||||||
except:
|
|
||||||
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
|
|
||||||
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
|
|
||||||
|
|
||||||
# Sort by aspect ratio
|
# Sort by aspect ratio
|
||||||
s = np.array(s, dtype=np.float64)
|
s = self.shapes # wh
|
||||||
ar = s[:, 1] / s[:, 0] # aspect ratio
|
ar = s[:, 1] / s[:, 0] # aspect ratio
|
||||||
irect = ar.argsort()
|
irect = ar.argsort()
|
||||||
self.img_files = [self.img_files[i] for i in irect]
|
self.img_files = [self.img_files[i] for i in irect]
|
||||||
|
@ -322,7 +325,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
elif mini > 1:
|
elif mini > 1:
|
||||||
shapes[i] = [1, 1 / mini]
|
shapes[i] = [1, 1 / mini]
|
||||||
|
|
||||||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32. + pad).astype(np.int) * 32
|
||||||
|
|
||||||
# Cache labels
|
# Cache labels
|
||||||
self.imgs = [None] * n
|
self.imgs = [None] * n
|
||||||
|
@ -530,7 +533,7 @@ def load_image(self, index):
|
||||||
assert img is not None, 'Image Not Found ' + path
|
assert img is not None, 'Image Not Found ' + path
|
||||||
h0, w0 = img.shape[:2] # orig hw
|
h0, w0 = img.shape[:2] # orig hw
|
||||||
r = self.img_size / max(h0, w0) # resize image to img_size
|
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||||
if r < 1 or (self.augment and r != 1): # always resize down, only resize up if training with augmentation
|
if r != 1: # always resize down, only resize up if training with augmentation
|
||||||
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
||||||
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||||
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
||||||
|
|
Loading…
Reference in New Issue