updates
This commit is contained in:
parent
a59350852b
commit
171f25cfc6
|
@ -32,6 +32,7 @@ def detect(save_txt=False, save_img=False):
|
|||
if classify:
|
||||
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
|
||||
modelc.load_state_dict(torch.load('resnet101.pt', map_location=device)['model']) # load weights
|
||||
modelc.to(device).eval()
|
||||
|
||||
# Fuse Conv2d + BatchNorm2d layers
|
||||
# model.fuse()
|
||||
|
|
|
@ -730,7 +730,7 @@ def apply_classifier(x, model, img, im0):
|
|||
# Reshape and pad cutouts
|
||||
b = xyxy2xywh(d[:, :4]) # boxes
|
||||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||||
b[:, 2:] = b[:, 2:] * 1.0 + 0 # pad
|
||||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||||
d[:, :4] = xywh2xyxy(b).long()
|
||||
|
||||
# Rescale boxes from img_size to im0 size
|
||||
|
@ -743,7 +743,7 @@ def apply_classifier(x, model, img, im0):
|
|||
for a in d: # per item
|
||||
j += 1
|
||||
cutout = im0[int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||||
im = cv2.resize(cutout, (128, 128)) # BGR
|
||||
im = cv2.resize(cutout, (224, 224)) # BGR
|
||||
cv2.imwrite('test%i.jpg' % j, cutout)
|
||||
|
||||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
|
|
Loading…
Reference in New Issue