This commit is contained in:
Glenn Jocher 2020-03-04 00:07:19 -08:00
parent 308f7c8563
commit 166f8c0e53
1 changed files with 17 additions and 8 deletions

View File

@ -501,7 +501,7 @@ def build_targets(model, targets):
return tcls, tbox, indices, av return tcls, tbox, indices, av
def non_max_suppression(prediction, conf_thres=0.5, iou_thres=0.5, multi_cls=True, classes=None, agnostic=False): def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_cls=True, classes=None, agnostic=False):
""" """
Removes detections with lower object confidence score than 'conf_thres' Removes detections with lower object confidence score than 'conf_thres'
Non-Maximum Suppression to further filter detections. Non-Maximum Suppression to further filter detections.
@ -513,7 +513,8 @@ def non_max_suppression(prediction, conf_thres=0.5, iou_thres=0.5, multi_cls=Tru
# Box constraints # Box constraints
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
method = 'vision_batch' method = 'fast_batch'
batched = 'batch' in method # run once per image, all classes simultaneously
nc = prediction[0].shape[1] - 5 # number of classes nc = prediction[0].shape[1] - 5 # number of classes
multi_cls = multi_cls and (nc > 1) # allow multiple classes per anchor multi_cls = multi_cls and (nc > 1) # allow multiple classes per anchor
output = [None] * len(prediction) output = [None] * len(prediction)
@ -550,16 +551,24 @@ def non_max_suppression(prediction, conf_thres=0.5, iou_thres=0.5, multi_cls=Tru
if not pred.shape[0]: if not pred.shape[0]:
continue continue
# Batched NMS
if method == 'vision_batch':
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # class-agnostic NMS
output[image_i] = pred[torchvision.ops.boxes.batched_nms(pred[:, :4], pred[:, 4], c, iou_thres)]
continue
# Sort by confidence # Sort by confidence
if not method.startswith('vision'): if not method.startswith('vision'):
pred = pred[pred[:, 4].argsort(descending=True)] pred = pred[pred[:, 4].argsort(descending=True)]
# Batched NMS
if batched:
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # class-agnostic NMS
boxes, scores = pred[:, :4].clone(), pred[:, 4]
if method == 'vision_batch':
i = torchvision.ops.boxes.batched_nms(boxes, scores, c, iou_thres)
elif method == 'fast_batch': # FastNMS from https://github.com/dbolya/yolact
boxes += c.view(-1, 1) * max_wh
iou = box_iou(boxes, boxes).triu_(diagonal=1) # zero upper triangle iou matrix
i = iou.max(dim=0)[0] < iou_thres
output[image_i] = pred[i]
continue
# All other NMS methods # All other NMS methods
det_max = [] det_max = []
cls = pred[:, -1] cls = pred[:, -1]