uncached label removal
This commit is contained in:
parent
b1d385a8de
commit
15f1343dfc
|
@ -257,7 +257,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||
|
||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
cache_labels=True, cache_images=False, single_cls=False):
|
||||
cache_images=False, single_cls=False):
|
||||
path = str(Path(path)) # os-agnostic
|
||||
assert os.path.isfile(path), 'File not found %s. See %s' % (path, help_url)
|
||||
with open(path, 'r') as f:
|
||||
|
@ -315,11 +315,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
|
||||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64
|
||||
|
||||
# Preload labels (required for weighted CE training)
|
||||
# Cache labels
|
||||
self.imgs = [None] * n
|
||||
self.labels = [None] * n
|
||||
if cache_labels or image_weights: # cache labels for faster training
|
||||
self.labels = [np.zeros((0, 5))] * n
|
||||
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
|
||||
extract_bounding_boxes = False
|
||||
create_datasubset = False
|
||||
pbar = tqdm(self.label_files, desc='Caching labels')
|
||||
|
@ -432,7 +430,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
# Load labels
|
||||
labels = []
|
||||
x = self.labels[index]
|
||||
if x is not None and x.size > 0:
|
||||
if x.size > 0:
|
||||
# Normalized xywh to pixel xyxy format
|
||||
labels = x.copy()
|
||||
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
||||
|
@ -502,9 +500,9 @@ def load_image(self, index):
|
|||
# loads 1 image from dataset, returns img, original hw, resized hw
|
||||
img = self.imgs[index]
|
||||
if img is None: # not cached
|
||||
img_path = self.img_files[index]
|
||||
img = cv2.imread(img_path) # BGR
|
||||
assert img is not None, 'Image Not Found ' + img_path
|
||||
path = self.img_files[index]
|
||||
img = cv2.imread(path) # BGR
|
||||
assert img is not None, 'Image Not Found ' + path
|
||||
h0, w0 = img.shape[:2] # orig hw
|
||||
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||
if r < 1 or (self.augment and r != 1): # always resize down, only resize up if training with augmentation
|
||||
|
@ -557,23 +555,14 @@ def load_mosaic(self, index):
|
|||
padw = x1a - x1b
|
||||
padh = y1a - y1b
|
||||
|
||||
# Load labels
|
||||
label_path = self.label_files[index]
|
||||
if os.path.isfile(label_path):
|
||||
# Labels
|
||||
x = self.labels[index]
|
||||
if x is None: # labels not preloaded
|
||||
with open(label_path, 'r') as f:
|
||||
x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
||||
|
||||
if x.size > 0:
|
||||
# Normalized xywh to pixel xyxy format
|
||||
labels = x.copy()
|
||||
if x.size > 0: # Normalized xywh to pixel xyxy format
|
||||
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
||||
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
||||
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
||||
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
||||
else:
|
||||
labels = np.zeros((0, 5), dtype=np.float32)
|
||||
labels4.append(labels)
|
||||
|
||||
# Concat/clip labels
|
||||
|
@ -585,10 +574,10 @@ def load_mosaic(self, index):
|
|||
# Augment
|
||||
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
||||
img4, labels4 = random_affine(img4, labels4,
|
||||
degrees=self.hyp['degrees'] * 1,
|
||||
translate=self.hyp['translate'] * 1,
|
||||
scale=self.hyp['scale'] * 1,
|
||||
shear=self.hyp['shear'] * 1,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
shear=self.hyp['shear'],
|
||||
border=-s // 2) # border to remove
|
||||
|
||||
return img4, labels4
|
||||
|
@ -688,7 +677,7 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10,
|
|||
area = w * h
|
||||
area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
|
||||
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio
|
||||
i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.2) & (ar < 10)
|
||||
i = (w > 4) & (h > 4) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 10)
|
||||
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = xy[i]
|
||||
|
|
Loading…
Reference in New Issue