diff --git a/README.md b/README.md index 3b20f76d..6da13508 100755 --- a/README.md +++ b/README.md @@ -115,13 +115,13 @@ Run `detect.py` with `webcam=True` to show a live webcam feed. - Compare to darknet published results https://arxiv.org/abs/1804.02767. - | [ultralytics/yolov3](https://github.com/ultralytics/yolov3) with `pycocotools` | [darknet/yolov3](https://arxiv.org/abs/1804.02767) + | [ultralytics/yolov3](https://github.com/ultralytics/yolov3) | [darknet/yolov3](https://arxiv.org/abs/1804.02767) --- | --- | --- -YOLOv3-320 | 51.8 | 51.5 -YOLOv3-416 | 55.4 | 55.3 -YOLOv3-608 | 58.2 | 57.9 +`YOLOv3 320` | 51.8 | 51.5 +`YOLOv3 416` | 55.4 | 55.3 +`YOLOv3 608` | 58.2 | 57.9 +`YOLOv3-spp 320` | 52.4 | - +`YOLOv3-spp 416` | 56.5 | - +`YOLOv3-spp 608` | 60.7 | 60.6 ``` bash sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 # bash yolov3/data/get_coco_dataset.sh sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3 cd yolov3 - -python3 test.py --save-json --conf-thres 0.001 --img-size 416 -Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights') -Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80) - Image Total P R mAP -Calculating mAP: 100%|█████████████████████████████████| 157/157 [08:34<00:00, 2.53s/it] - 5000 5000 0.0896 0.756 0.555 - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.312 - Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.554 - Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.317 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.145 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.343 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.452 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.268 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.411 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.435 - Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244 - Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.477 - Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.587 python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16 Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights') @@ -182,6 +166,25 @@ Calculating mAP: 100%|███████████████████ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577 + +python3 test.py --weights weights/yolov3-spp.weights --cfg cfg/yolov3-spp.cfg --save-json --img-size 608 --batch-size 8 +Namespace(batch_size=8, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights') +Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80) + Image Total P R mAP +Calculating mAP: 100%|█████████████████████████████████| 625/625 [07:01<00:00, 1.56it/s] + 5000 5000 0.12 0.81 0.611 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.366 + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.607 + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.386 + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.207 + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391 + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.485 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.296 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.464 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.494 + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331 + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517 + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618 ``` # Citation