rename /checkpoints to /weights
This commit is contained in:
parent
553254bbd6
commit
0ae90d0fb7
|
@ -33,7 +33,7 @@ def detect(opt):
|
|||
# Load model
|
||||
model = Darknet(opt.cfg, opt.img_size)
|
||||
|
||||
weights_path = 'checkpoints/yolov3.pt'
|
||||
weights_path = 'weights/yolov3.pt'
|
||||
if weights_path.endswith('.weights'): # saved in darknet format
|
||||
load_weights(model, weights_path)
|
||||
else: # endswith('.pt'), saved in pytorch format
|
||||
|
|
2
test.py
2
test.py
|
@ -8,7 +8,7 @@ parser = argparse.ArgumentParser()
|
|||
parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch')
|
||||
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
||||
parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('-weights_path', type=str, default='weights/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
|
||||
parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
||||
parser.add_argument('-conf_thres', type=float, default=0.5, help='object confidence threshold')
|
||||
|
|
12
train.py
12
train.py
|
@ -28,7 +28,7 @@ if cuda:
|
|||
|
||||
|
||||
def main(opt):
|
||||
os.makedirs('checkpoints', exist_ok=True)
|
||||
os.makedirs('weights', exist_ok=True)
|
||||
|
||||
# Configure run
|
||||
data_config = parse_data_config(opt.data_config_path)
|
||||
|
@ -48,7 +48,7 @@ def main(opt):
|
|||
start_epoch = 0
|
||||
best_loss = float('inf')
|
||||
if opt.resume:
|
||||
checkpoint = torch.load('checkpoints/latest.pt', map_location='cpu')
|
||||
checkpoint = torch.load('weights/latest.pt', map_location='cpu')
|
||||
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
if torch.cuda.device_count() > 1:
|
||||
|
@ -175,15 +175,15 @@ def main(opt):
|
|||
'best_loss': best_loss,
|
||||
'model': model.state_dict(),
|
||||
'optimizer': optimizer.state_dict()}
|
||||
torch.save(checkpoint, 'checkpoints/latest.pt')
|
||||
torch.save(checkpoint, 'weights/latest.pt')
|
||||
|
||||
# Save best checkpoint
|
||||
if best_loss == loss_per_target:
|
||||
os.system('cp checkpoints/latest.pt checkpoints/best.pt')
|
||||
os.system('cp weights/latest.pt weights/best.pt')
|
||||
|
||||
# Save backup checkpoints every 5 epochs
|
||||
# Save backup weights every 5 epochs
|
||||
if (epoch > 0) & (epoch % 5 == 0):
|
||||
os.system('cp checkpoints/latest.pt checkpoints/backup' + str(epoch) + '.pt')
|
||||
os.system('cp weights/latest.pt weights/backup' + str(epoch) + '.pt')
|
||||
|
||||
# Save final model
|
||||
dt = time.time() - t0
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Start
|
||||
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 train.py -img_size 416 -epochs 160
|
||||
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 train.py -img_size 416
|
||||
|
||||
# Resume
|
||||
python3 train.py -img_size 416 -resume 1
|
||||
|
|
|
@ -410,7 +410,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|||
return output
|
||||
|
||||
|
||||
def strip_optimizer_from_checkpoint(filename='checkpoints/best.pt'):
|
||||
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
|
||||
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
|
||||
import torch
|
||||
a = torch.load(filename, map_location='cpu')
|
||||
|
|
Loading…
Reference in New Issue