This commit is contained in:
Glenn Jocher 2019-08-06 14:57:12 +02:00
parent 50b1bb71be
commit 082fdebfc1
2 changed files with 18 additions and 14 deletions

View File

@ -341,7 +341,7 @@ if __name__ == '__main__':
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path') parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path') parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes') parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes')
parser.add_argument('--img-size', type=int, default=320, help='inference size (pixels)') parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training flag') parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--transfer', action='store_true', help='transfer learning flag') parser.add_argument('--transfer', action='store_true', help='transfer learning flag')

View File

@ -180,18 +180,25 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
tpc = (tp[i]).cumsum() tpc = (tp[i]).cumsum()
# Recall # Recall
recall_curve = tpc / (n_gt + 1e-16) recall = tpc / (n_gt + 1e-16) # recall curve
r.append(recall_curve[-1]) r.append(recall[-1])
# Precision # Precision
precision_curve = tpc / (tpc + fpc) precision = tpc / (tpc + fpc) # precision curve
p.append(precision_curve[-1]) p.append(precision[-1])
# AP from recall-precision curve # AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve)) ap.append(compute_ap(recall, precision))
# Plot # Plot
# plt.plot(recall_curve, precision_curve) # fig, ax = plt.subplots(1, 1, figsize=(4, 4))
# ax.plot(np.concatenate(([0.], recall)), np.concatenate(([0.], precision)))
# ax.set_xlabel('YOLOv3-SPP')
# ax.set_xlabel('Recall')
# ax.set_ylabel('Precision')
# ax.set_xlim(0, 1)
# fig.tight_layout()
# fig.savefig('PR_curve.png', dpi=300)
# Compute F1 score (harmonic mean of precision and recall) # Compute F1 score (harmonic mean of precision and recall)
p, r, ap = np.array(p), np.array(r), np.array(ap) p, r, ap = np.array(p), np.array(r), np.array(ap)
@ -209,21 +216,18 @@ def compute_ap(recall, precision):
# Returns # Returns
The average precision as computed in py-faster-rcnn. The average precision as computed in py-faster-rcnn.
""" """
# correct AP calculation # Append sentinel values to beginning and end
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.])) mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.])) mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope # Compute the precision envelope
for i in range(mpre.size - 1, 0, -1): for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points # Calculate area under PR curve, looking for points where x axis (recall) changes
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0] i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec # Sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap return ap