updates
This commit is contained in:
parent
50b1bb71be
commit
082fdebfc1
2
train.py
2
train.py
|
@ -341,7 +341,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
||||
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes')
|
||||
parser.add_argument('--img-size', type=int, default=320, help='inference size (pixels)')
|
||||
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
|
||||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
||||
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
|
||||
|
|
|
@ -180,18 +180,25 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
|
|||
tpc = (tp[i]).cumsum()
|
||||
|
||||
# Recall
|
||||
recall_curve = tpc / (n_gt + 1e-16)
|
||||
r.append(recall_curve[-1])
|
||||
recall = tpc / (n_gt + 1e-16) # recall curve
|
||||
r.append(recall[-1])
|
||||
|
||||
# Precision
|
||||
precision_curve = tpc / (tpc + fpc)
|
||||
p.append(precision_curve[-1])
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p.append(precision[-1])
|
||||
|
||||
# AP from recall-precision curve
|
||||
ap.append(compute_ap(recall_curve, precision_curve))
|
||||
ap.append(compute_ap(recall, precision))
|
||||
|
||||
# Plot
|
||||
# plt.plot(recall_curve, precision_curve)
|
||||
# fig, ax = plt.subplots(1, 1, figsize=(4, 4))
|
||||
# ax.plot(np.concatenate(([0.], recall)), np.concatenate(([0.], precision)))
|
||||
# ax.set_xlabel('YOLOv3-SPP')
|
||||
# ax.set_xlabel('Recall')
|
||||
# ax.set_ylabel('Precision')
|
||||
# ax.set_xlim(0, 1)
|
||||
# fig.tight_layout()
|
||||
# fig.savefig('PR_curve.png', dpi=300)
|
||||
|
||||
# Compute F1 score (harmonic mean of precision and recall)
|
||||
p, r, ap = np.array(p), np.array(r), np.array(ap)
|
||||
|
@ -209,21 +216,18 @@ def compute_ap(recall, precision):
|
|||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
# correct AP calculation
|
||||
# first append sentinel values at the end
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = np.concatenate(([0.], recall, [1.]))
|
||||
mpre = np.concatenate(([0.], precision, [0.]))
|
||||
|
||||
# compute the precision envelope
|
||||
# Compute the precision envelope
|
||||
for i in range(mpre.size - 1, 0, -1):
|
||||
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||||
|
||||
# to calculate area under PR curve, look for points
|
||||
# where X axis (recall) changes value
|
||||
# Calculate area under PR curve, looking for points where x axis (recall) changes
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||||
|
||||
# and sum (\Delta recall) * prec
|
||||
# Sum (\Delta recall) * prec
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||||
return ap
|
||||
|
||||
|
|
Loading…
Reference in New Issue