diff --git a/models.py b/models.py index 8a3460da..066fe0ca 100755 --- a/models.py +++ b/models.py @@ -22,12 +22,12 @@ def create_modules(module_defs, img_size, arc): if mdef['type'] == 'convolutional': bn = int(mdef['batch_normalize']) filters = int(mdef['filters']) - kernel_size = int(mdef['size']) + size = int(mdef['size']) stride = int(mdef['stride']) if 'stride' in mdef else (int(mdef['stride_y']), int(mdef['stride_x'])) - pad = (kernel_size - 1) // 2 if int(mdef['pad']) else 0 + pad = (size - 1) // 2 if int(mdef['pad']) else 0 modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1], out_channels=filters, - kernel_size=kernel_size, + kernel_size=size, stride=stride, padding=pad, bias=not bn)) @@ -40,10 +40,10 @@ def create_modules(module_defs, img_size, arc): modules.add_module('activation', Swish()) elif mdef['type'] == 'maxpool': - kernel_size = int(mdef['size']) + size = int(mdef['size']) stride = int(mdef['stride']) - maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2)) - if kernel_size == 2 and stride == 1: # yolov3-tiny + maxpool = nn.MaxPool2d(kernel_size=size, stride=stride, padding=int((size - 1) // 2)) + if size == 2 and stride == 1: # yolov3-tiny modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1))) modules.add_module('MaxPool2d', maxpool) else: