Merge pull request #37 from nirbenz/nirbenz
Fixed NMS bug causing big CPU usage.
This commit is contained in:
commit
06579775a3
|
@ -288,8 +288,6 @@ def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG
|
|||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||
prediction = prediction.cpu()
|
||||
|
||||
"""
|
||||
Removes detections with lower object confidence score than 'conf_thres' and performs
|
||||
Non-Maximum Suppression to further filter detections.
|
||||
|
@ -305,15 +303,17 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|||
# cross-class NMS
|
||||
cross_class_nms = False
|
||||
if cross_class_nms:
|
||||
thresh = 0.85
|
||||
# thresh = 0.85
|
||||
thresh = nms_thres
|
||||
a = pred.clone()
|
||||
a = a[np.argsort(-a[:, 4])] # sort best to worst
|
||||
_, indices = torch.sort(-a[:, 4], 0) # sort best to worst
|
||||
a = a[indices]
|
||||
radius = 30 # area to search for cross-class ious
|
||||
for i in range(len(a)):
|
||||
if i >= len(a) - 1:
|
||||
break
|
||||
|
||||
close = (np.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (np.abs(a[i, 1] - a[i + 1:, 1]) < radius)
|
||||
close = (torch.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (torch.abs(a[i, 1] - a[i + 1:, 1]) < radius)
|
||||
close = close.nonzero()
|
||||
|
||||
if len(close) > 0:
|
||||
|
@ -327,10 +327,11 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|||
a = a[mask]
|
||||
pred = a
|
||||
|
||||
x, y, w, h = pred[:, 0].numpy(), pred[:, 1].numpy(), pred[:, 2].numpy(), pred[:, 3].numpy()
|
||||
x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
|
||||
a = w * h # area
|
||||
ar = w / (h + 1e-16) # aspect ratio
|
||||
log_w, log_h, log_a, log_ar = np.log(w), np.log(h), np.log(a), np.log(ar)
|
||||
|
||||
log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
|
||||
|
||||
# n = len(w)
|
||||
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
|
||||
|
@ -341,8 +342,10 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|||
|
||||
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
|
||||
|
||||
v = ((pred[:, 4] > conf_thres) & (class_prob > .3)).numpy()
|
||||
v = v.nonzero()
|
||||
v = ((pred[:, 4] > conf_thres) & (class_prob > .3))
|
||||
v = v.nonzero().squeeze()
|
||||
if len(v.shape) == 0:
|
||||
v = v.unsqueeze(0)
|
||||
|
||||
pred = pred[v]
|
||||
class_prob = class_prob[v]
|
||||
|
@ -366,7 +369,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|||
# Iterate through all predicted classes
|
||||
unique_labels = detections[:, -1].cpu().unique()
|
||||
if prediction.is_cuda:
|
||||
unique_labels = unique_labels.cuda()
|
||||
unique_labels = unique_labels.cuda(prediction.device)
|
||||
|
||||
nms_style = 'OR' # 'AND' or 'OR' (classical)
|
||||
for c in unique_labels:
|
||||
|
|
Loading…
Reference in New Issue