multi_gpu multi_scale
This commit is contained in:
parent
32f1def48f
commit
056eed2833
|
@ -36,7 +36,7 @@ def detect(
|
|||
os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights)
|
||||
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
|
||||
else: # darknet format
|
||||
load_darknet_weights(model, weights)
|
||||
_ = load_darknet_weights(model, weights)
|
||||
|
||||
model.to(device).eval()
|
||||
|
||||
|
|
|
@ -293,11 +293,7 @@ def load_darknet_weights(self, weights, cutoff=-1):
|
|||
conv_layer.weight.data.copy_(conv_w)
|
||||
ptr += num_w
|
||||
|
||||
|
||||
"""
|
||||
@:param path - path of the new weights file
|
||||
@:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved)
|
||||
"""
|
||||
return cutoff
|
||||
|
||||
|
||||
def save_weights(self, path, cutoff=-1):
|
||||
|
|
2
test.py
2
test.py
|
@ -35,7 +35,7 @@ def test(
|
|||
if weights.endswith('.pt'): # pytorch format
|
||||
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
|
||||
else: # darknet format
|
||||
load_darknet_weights(model, weights)
|
||||
_ = load_darknet_weights(model, weights)
|
||||
|
||||
model.to(device).eval()
|
||||
|
||||
|
|
47
train.py
47
train.py
|
@ -14,7 +14,7 @@ def train(
|
|||
resume=False,
|
||||
epochs=100,
|
||||
batch_size=16,
|
||||
accumulated_batches=1,
|
||||
accumulate=1,
|
||||
multi_scale=False,
|
||||
freeze_backbone=False,
|
||||
):
|
||||
|
@ -35,9 +35,9 @@ def train(
|
|||
model = Darknet(cfg, img_size)
|
||||
|
||||
# Get dataloader
|
||||
dataloader = LoadImagesAndLabels(train_path, batch_size, img_size, multi_scale=multi_scale, augment=True)
|
||||
dataloader = LoadImagesAndLabels(train_path, batch_size, img_size, augment=True)
|
||||
|
||||
lr0 = 0.001
|
||||
lr0 = 0.001 # initial learning rate
|
||||
cutoff = -1 # backbone reaches to cutoff layer
|
||||
start_epoch = 0
|
||||
best_loss = float('inf')
|
||||
|
@ -64,14 +64,12 @@ def train(
|
|||
else:
|
||||
# Initialize model with backbone (optional)
|
||||
if cfg.endswith('yolov3.cfg'):
|
||||
load_darknet_weights(model, weights + 'darknet53.conv.74')
|
||||
cutoff = 75
|
||||
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
|
||||
elif cfg.endswith('yolov3-tiny.cfg'):
|
||||
load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
|
||||
cutoff = 15
|
||||
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
|
||||
|
||||
# Set optimizer
|
||||
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=.9)
|
||||
|
||||
if torch.cuda.device_count() > 1:
|
||||
model = nn.DataParallel(model)
|
||||
|
@ -94,22 +92,21 @@ def train(
|
|||
# Update scheduler (automatic)
|
||||
# scheduler.step()
|
||||
|
||||
# Update scheduler (manual) at 0, 54, 61 epochs to 1e-3, 1e-4, 1e-5
|
||||
# Update scheduler (manual)
|
||||
if epoch > 250:
|
||||
lr = lr0 / 10
|
||||
else:
|
||||
lr = lr0
|
||||
for g in optimizer.param_groups:
|
||||
g['lr'] = lr
|
||||
for x in optimizer.param_groups:
|
||||
x['lr'] = lr
|
||||
|
||||
# Freeze darknet53.conv.74 for first epoch
|
||||
if freeze_backbone and (epoch < 2):
|
||||
# Freeze backbone at epoch 0, unfreeze at epoch 1
|
||||
if freeze_backbone and epoch < 2:
|
||||
for i, (name, p) in enumerate(model.named_parameters()):
|
||||
if int(name.split('.')[1]) < cutoff: # if layer < 75
|
||||
p.requires_grad = False if (epoch == 0) else True
|
||||
|
||||
ui = -1
|
||||
optimizer.zero_grad()
|
||||
rloss = defaultdict(float)
|
||||
for i, (imgs, targets, _, _) in enumerate(dataloader):
|
||||
targets = targets.to(device)
|
||||
|
@ -118,10 +115,10 @@ def train(
|
|||
continue
|
||||
|
||||
# SGD burn-in
|
||||
if (epoch == 0) & (i <= n_burnin):
|
||||
if (epoch == 0) and (i <= n_burnin):
|
||||
lr = lr0 * (i / n_burnin) ** 4
|
||||
for g in optimizer.param_groups:
|
||||
g['lr'] = lr
|
||||
for x in optimizer.param_groups:
|
||||
x['lr'] = lr
|
||||
|
||||
# Run model
|
||||
pred = model(imgs.to(device))
|
||||
|
@ -136,7 +133,7 @@ def train(
|
|||
loss.backward()
|
||||
|
||||
# Accumulate gradient for x batches before optimizing
|
||||
if ((i + 1) % accumulated_batches == 0) or (i == len(dataloader) - 1):
|
||||
if (i + 1) % accumulate == 0 or (i + 1) == len(dataloader):
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
@ -154,11 +151,17 @@ def train(
|
|||
t0 = time.time()
|
||||
print(s)
|
||||
|
||||
# Multi-Scale training (320 - 608 pixels) every 10 batches
|
||||
if multi_scale and (i + 1) % 10 == 0:
|
||||
dataloader.img_size = random.choice(range(10, 20)) * 32
|
||||
print('multi_scale img_size = %g' % dataloader.img_size)
|
||||
|
||||
# Update best loss
|
||||
if rloss['total'] < best_loss:
|
||||
best_loss = rloss['total']
|
||||
|
||||
save = True # save training results
|
||||
# Save training results
|
||||
save = True
|
||||
if save:
|
||||
# Save latest checkpoint
|
||||
checkpoint = {'epoch': epoch,
|
||||
|
@ -172,7 +175,7 @@ def train(
|
|||
os.system('cp ' + latest + ' ' + best)
|
||||
|
||||
# Save backup weights every 5 epochs (optional)
|
||||
if (epoch > 0) & (epoch % 5 == 0):
|
||||
if (epoch > 0) and (epoch % 5 == 0):
|
||||
os.system('cp ' + latest + ' ' + weights + 'backup{}.pt'.format(epoch))
|
||||
|
||||
# Calculate mAP
|
||||
|
@ -188,7 +191,7 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--epochs', type=int, default=270, help='number of epochs')
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
||||
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
|
||||
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
||||
|
@ -206,6 +209,6 @@ if __name__ == '__main__':
|
|||
resume=opt.resume,
|
||||
epochs=opt.epochs,
|
||||
batch_size=opt.batch_size,
|
||||
accumulated_batches=opt.accumulated_batches,
|
||||
accumulate=opt.accumulate,
|
||||
multi_scale=opt.multi_scale,
|
||||
)
|
||||
|
|
|
@ -90,7 +90,7 @@ class LoadWebcam: # for inference
|
|||
|
||||
|
||||
class LoadImagesAndLabels: # for training
|
||||
def __init__(self, path, batch_size=1, img_size=608, multi_scale=False, augment=False):
|
||||
def __init__(self, path, batch_size=1, img_size=608, augment=False):
|
||||
with open(path, 'r') as file:
|
||||
self.img_files = file.readlines()
|
||||
self.img_files = [x.replace('\n', '') for x in self.img_files]
|
||||
|
@ -102,8 +102,7 @@ class LoadImagesAndLabels: # for training
|
|||
self.nF = len(self.img_files) # number of image files
|
||||
self.nB = math.ceil(self.nF / batch_size) # number of batches
|
||||
self.batch_size = batch_size
|
||||
self.height = img_size
|
||||
self.multi_scale = multi_scale
|
||||
self.img_size = img_size
|
||||
self.augment = augment
|
||||
|
||||
assert self.nF > 0, 'No images found in %s' % path
|
||||
|
@ -121,13 +120,6 @@ class LoadImagesAndLabels: # for training
|
|||
ia = self.count * self.batch_size
|
||||
ib = min((self.count + 1) * self.batch_size, self.nF)
|
||||
|
||||
if self.multi_scale:
|
||||
# Multi-Scale YOLO Training
|
||||
height = random.choice(range(10, 20)) * 32 # 320 - 608 pixels
|
||||
else:
|
||||
# Fixed-Scale YOLO Training
|
||||
height = self.height
|
||||
|
||||
img_all, labels_all, img_paths, img_shapes = [], [], [], []
|
||||
for index, files_index in enumerate(range(ia, ib)):
|
||||
img_path = self.img_files[self.shuffled_vector[files_index]]
|
||||
|
@ -159,7 +151,7 @@ class LoadImagesAndLabels: # for training
|
|||
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
|
||||
|
||||
h, w, _ = img.shape
|
||||
img, ratio, padw, padh = letterbox(img, height=height)
|
||||
img, ratio, padw, padh = letterbox(img, height=self.img_size)
|
||||
|
||||
# Load labels
|
||||
if os.path.isfile(label_path):
|
||||
|
@ -189,7 +181,7 @@ class LoadImagesAndLabels: # for training
|
|||
nL = len(labels)
|
||||
if nL > 0:
|
||||
# convert xyxy to xywh
|
||||
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5].copy()) / height
|
||||
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5].copy()) / self.img_size
|
||||
|
||||
if self.augment:
|
||||
# random left-right flip
|
||||
|
|
Loading…
Reference in New Issue