updates
This commit is contained in:
parent
b53d6d6ecf
commit
056976b4fc
|
@ -217,40 +217,46 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
if augment or image_weights: # cache labels for faster training
|
||||
self.labels = [np.zeros((0, 5))] * n
|
||||
extract_bounding_boxes = False
|
||||
for i, file in enumerate(tqdm(self.label_files, desc='Caching labels')):
|
||||
pbar = tqdm(self.label_files, desc='Reading labels')
|
||||
nm, nf, ne = 0, 0, 0 # number missing, number found, number empty
|
||||
for i, file in enumerate(pbar):
|
||||
try:
|
||||
with open(file, 'r') as f:
|
||||
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
||||
if l.shape[0]:
|
||||
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
||||
assert (l >= 0).all(), 'negative labels: %s' % file
|
||||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
||||
self.labels[i] = l
|
||||
|
||||
# Extract object detection boxes for a second stage classifier
|
||||
if extract_bounding_boxes:
|
||||
p = Path(self.img_files[i])
|
||||
img = cv2.imread(str(p))
|
||||
h, w, _ = img.shape
|
||||
for j, x in enumerate(l):
|
||||
f = '%s%sclassification%s%g_%g_%s' % (
|
||||
p.parent.parent, os.sep, os.sep, x[0], j, p.name)
|
||||
if not os.path.exists(Path(f).parent):
|
||||
os.makedirs(Path(f).parent) # make new output folder
|
||||
box = xywh2xyxy(x[1:].reshape(-1, 4)).ravel()
|
||||
box = np.clip(box, 0, 1) # clip boxes outside of image
|
||||
result = cv2.imwrite(f, img[int(box[1] * h):int(box[3] * h),
|
||||
int(box[0] * w):int(box[2] * w)])
|
||||
if not result:
|
||||
print('stop')
|
||||
except:
|
||||
pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file
|
||||
assert len(np.concatenate(self.labels, 0)) > 0, 'No labels found. Incorrect label paths provided.'
|
||||
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
|
||||
continue
|
||||
|
||||
if l.shape[0]:
|
||||
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
||||
assert (l >= 0).all(), 'negative labels: %s' % file
|
||||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
||||
self.labels[i] = l
|
||||
nf += 1 # file found
|
||||
|
||||
# Extract object detection boxes for a second stage classifier
|
||||
if extract_bounding_boxes:
|
||||
p = Path(self.img_files[i])
|
||||
img = cv2.imread(str(p))
|
||||
h, w, _ = img.shape
|
||||
for j, x in enumerate(l):
|
||||
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
|
||||
if not os.path.exists(Path(f).parent):
|
||||
os.makedirs(Path(f).parent) # make new output folder
|
||||
box = xywh2xyxy(x[1:].reshape(-1, 4)).ravel()
|
||||
b = np.clip(box, 0, 1) # clip boxes outside of image
|
||||
ret_val = cv2.imwrite(f, img[int(b[1] * h):int(b[3] * h), int(b[0] * w):int(b[2] * w)])
|
||||
assert ret_val, 'Failure extracting classifier boxes'
|
||||
else:
|
||||
ne += 1 # file empty
|
||||
|
||||
pbar.desc = 'Reading labels (%g found, %g missing, %g empty for %g images)' % (nf, nm, ne, n)
|
||||
assert nf > 0, 'No labels found. Recommend correcting image and label paths.'
|
||||
|
||||
# Cache images into memory for faster training (~5GB)
|
||||
cache_images = False
|
||||
if cache_images and augment: # if training
|
||||
for i in tqdm(range(min(len(self.img_files), 10000)), desc='Caching images'): # max 10k images
|
||||
for i in tqdm(range(min(len(self.img_files), 10000)), desc='Reading images'): # max 10k images
|
||||
img_path = self.img_files[i]
|
||||
img = cv2.imread(img_path) # BGR
|
||||
assert img is not None, 'Image Not Found ' + img_path
|
||||
|
|
Loading…
Reference in New Issue