diff --git a/README.md b/README.md index d33159cb..2a82c1c5 100755 --- a/README.md +++ b/README.md @@ -80,23 +80,17 @@ HS**V** Intensity | +/- 50% https://cloud.google.com/deep-learning-vm/ **Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory) **CPU platform:** Intel Skylake -**GPUs:** K80 ($0.198/hr), P4 ($0.279/hr), T4 ($0.353/hr), P100 ($0.493/hr), V100 ($0.803/hr) +**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.80/hr) CUDA with Nvidia Apex FP16/32 **HDD:** 100 GB SSD -**Dataset:** COCO train 2014 +**Dataset:** COCO train 2014 (117,263 images) GPUs | `batch_size` | batch time | epoch time | epoch cost --- |---| --- | --- | --- - | (images) | (s/batch) | | -1 K80 | 16 | 1.43s | 175min | $0.58 -1 P4 | 8 | 0.51s | 125min | $0.58 -1 T4 | 16 | 0.78s | 94min | $0.55 -1 P100 | 16 | 0.39s | 48min | $0.39 -2 P100 | 32 | 0.48s | 29min | $0.47 -4 P100 | 64 | 0.65s | 20min | $0.65 -1 V100 | 16 | 0.25s | 31min | $0.41 -2 V100 | 32 | 0.29s | 18min | $0.48 -4 V100 | 64 | 0.41s | 13min | $0.70 -8 V100 | 128 | 0.49s | 7min | $0.80 +1 K80 | 64 (32x2) | 2.9s | 175min | $0.58 +1 T4 | 64 (32x2) | 0.8s | 49min | $0.29 +1 2080ti | 64 (32x2) | - | - | - +1 V100 | 64 (32x2) | 0.38s | 23min | $0.31 +2 V100 | 64 (64x1) | 0.38s | 23min | $0.62 # Inference diff --git a/utils/utils.py b/utils/utils.py index 562cfa27..e29a781b 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -628,6 +628,7 @@ def plot_images(imgs, targets, paths=None, fname='images.jpg'): fig = plt.figure(figsize=(10, 10)) bs, _, h, w = imgs.shape # batch size, _, height, width + bs = min(bs, 16) # limit plot to 16 images ns = np.ceil(bs ** 0.5) # number of subplots for i in range(bs):