diff --git a/README.md b/README.md index 2d81c11a..248795dd 100755 --- a/README.md +++ b/README.md @@ -152,24 +152,24 @@ YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |512 |16.6
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |608 |16.6
33.1
37.0
**41.1** |35.4
58.2
60.7
**61.5** ```bash -$ python3 test.py --img-size 608 --iou-thr 0.5 --weights ultralytics68.pt --cfg yolov3-spp.cfg +$ python3 test.py --img-size 608 --iou-thr 0.6 --weights ultralytics68.pt --cfg yolov3-spp.cfg -Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.5, save_json=True, task='test', weights='ultralytics68.pt') -Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB) - Class Images Targets P R mAP@0.5 F1: 100% 157/157 [04:13<00:00, 1.16it/s] - all 5e+03 3.51e+04 0.0437 0.88 0.607 0.0822 - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.406 +Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, task='test', weights='ultralytics68.pt') +Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB) + Class Images Targets P R mAP@0.5 F1: 100% 157/157 [03:30<00:00, 1.16it/s] + all 5e+03 3.51e+04 0.0353 0.891 0.606 0.0673 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.409 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.615 - Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.431 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.238 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.444 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.516 + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.437 + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242 + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.448 + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.519 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.337 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.548 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.592 - Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.418 - Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.635 - Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.729 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.557 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.612 + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.438 + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.658 + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746 ``` # Reproduce Our Results