diff --git a/README.md b/README.md
index 2d81c11a..248795dd 100755
--- a/README.md
+++ b/README.md
@@ -152,24 +152,24 @@ YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |512 |16.6
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |608 |16.6
33.1
37.0
**41.1** |35.4
58.2
60.7
**61.5**
```bash
-$ python3 test.py --img-size 608 --iou-thr 0.5 --weights ultralytics68.pt --cfg yolov3-spp.cfg
+$ python3 test.py --img-size 608 --iou-thr 0.6 --weights ultralytics68.pt --cfg yolov3-spp.cfg
-Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.5, save_json=True, task='test', weights='ultralytics68.pt')
-Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
- Class Images Targets P R mAP@0.5 F1: 100% 157/157 [04:13<00:00, 1.16it/s]
- all 5e+03 3.51e+04 0.0437 0.88 0.607 0.0822
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.406
+Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, task='test', weights='ultralytics68.pt')
+Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
+ Class Images Targets P R mAP@0.5 F1: 100% 157/157 [03:30<00:00, 1.16it/s]
+ all 5e+03 3.51e+04 0.0353 0.891 0.606 0.0673
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.409
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.615
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.431
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.238
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.444
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.516
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.437
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.448
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.519
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.337
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.548
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.592
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.418
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.635
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.729
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.557
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.612
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.438
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.658
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746
```
# Reproduce Our Results