From 03791babfb3462cba287155d45107124283717c4 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Thu, 21 Mar 2019 12:08:55 +0200 Subject: [PATCH] Merge branch 'master' of /Users/glennjocher/PycharmProjects/yolov3 with conflicts. --- train.py | 45 +++++++++++++++++++++++---------------------- utils/gcp.sh | 2 +- 2 files changed, 24 insertions(+), 23 deletions(-) diff --git a/train.py b/train.py index 27647173..db453b4c 100644 --- a/train.py +++ b/train.py @@ -7,6 +7,7 @@ from utils.datasets import * from utils.utils import * +# @profile def train( cfg, data_cfg, @@ -34,47 +35,39 @@ def train( # Initialize model model = Darknet(cfg, img_size).to(device) + # Optimizer + lr0 = 0.001 # initial learning rate + optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=.9) + # Get dataloader dataloader = LoadImagesAndLabels(train_path, batch_size, img_size, augment=True) - # dataloader = torch.utils.data.DataLoader(dataloader, batch_size=batch_size, num_workers=0) + # from torch.utils.data import DataLoader + # dataloader = DataLoader(dataloader, batch_size=batch_size, num_workers=1) - lr0 = 0.001 # initial learning rate cutoff = -1 # backbone reaches to cutoff layer start_epoch = 0 best_loss = float('inf') - if resume: - checkpoint = torch.load(latest, map_location=device) - - # Load weights to resume from + if resume: # Load previously saved PyTorch model + checkpoint = torch.load(latest, map_location=device) # load checkpoin model.load_state_dict(checkpoint['model']) - - # Transfer learning (train only YOLO layers) - # for i, (name, p) in enumerate(model.named_parameters()): - # p.requires_grad = True if (p.shape[0] == 255) else False - - # Set optimizer - optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9) - start_epoch = checkpoint['epoch'] + 1 if checkpoint['optimizer'] is not None: optimizer.load_state_dict(checkpoint['optimizer']) best_loss = checkpoint['best_loss'] - del checkpoint # current, saved - else: - # Initialize model with backbone (optional) + else: # Initialize model with backbone (optional) if cfg.endswith('yolov3.cfg'): cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74') elif cfg.endswith('yolov3-tiny.cfg'): cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15') - # Set optimizer - optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9) - if torch.cuda.device_count() > 1: model = nn.DataParallel(model) - model.to(device).train() + + # # Transfer learning (train only YOLO layers) + for i, (name, p) in enumerate(model.named_parameters()): + p.requires_grad = True if (p.shape[0] == 255) else False # Set scheduler # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[54, 61], gamma=0.1) @@ -110,6 +103,11 @@ def train( ui = -1 rloss = defaultdict(float) for i, (imgs, targets, _, _) in enumerate(dataloader): + + if targets.shape[1] == 100: # multithreaded forced to 100 + targets = targets.view((-1, 6)) + targets = targets[targets[:, 5].nonzero().squeeze()] + targets = targets.to(device) nT = targets.shape[0] if nT == 0: # if no targets continue @@ -157,6 +155,9 @@ def train( dataloader.img_size = random.choice(range(10, 20)) * 32 print('multi_scale img_size = %g' % dataloader.img_size) + if i == 10: + return + # Update best loss if rloss['total'] < best_loss: best_loss = rloss['total'] @@ -191,7 +192,7 @@ def train( if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--epochs', type=int, default=270, help='number of epochs') - parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch') + parser.add_argument('--batch-size', type=int, default=2, help='size of each image batch') parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing') parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path') diff --git a/utils/gcp.sh b/utils/gcp.sh index 5cc27849..6d46f236 100755 --- a/utils/gcp.sh +++ b/utils/gcp.sh @@ -9,7 +9,7 @@ sudo shutdown # Start sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 cp -r weights yolov3 -cd yolov3 && python3 train.py --batch-size 26 +cd yolov3 && python3 train.py --batch-size 64 --multi_scale # Resume python3 train.py --resume