add MixConv2d() layer

This commit is contained in:
Glenn Jocher 2020-04-03 20:03:44 -07:00
parent eb9fb245aa
commit 00c1fdd805
4 changed files with 46 additions and 9 deletions

View File

@ -2,7 +2,7 @@
FROM nvcr.io/nvidia/pytorch:20.03-py3 FROM nvcr.io/nvidia/pytorch:20.03-py3
# Install dependencies (pip or conda) # Install dependencies (pip or conda)
RUN pip install -U gsutil RUN pip install -U gsutil thop
# RUN pip install -U -r requirements.txt # RUN pip install -U -r requirements.txt
# RUN conda update -n base -c defaults conda # RUN conda update -n base -c defaults conda
# RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow # RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow

View File

@ -23,13 +23,21 @@ def create_modules(module_defs, img_size):
filters = mdef['filters'] filters = mdef['filters']
size = mdef['size'] size = mdef['size']
stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x']) stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x'])
modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1], if isinstance(size, int): # single-size conv
out_channels=filters, modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1],
kernel_size=size, out_channels=filters,
stride=stride, kernel_size=size,
padding=(size - 1) // 2 if mdef['pad'] else 0, stride=stride,
groups=mdef['groups'] if 'groups' in mdef else 1, padding=(size - 1) // 2 if mdef['pad'] else 0,
bias=not bn)) groups=mdef['groups'] if 'groups' in mdef else 1,
bias=not bn))
else: # multiple-size conv
modules.add_module('MixConv2d', MixConv2d(in_ch=output_filters[-1],
out_ch=filters,
k=size,
stride=stride,
bias=not bn))
if bn: if bn:
modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4)) modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4))
else: else:

View File

@ -35,6 +35,35 @@ class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers http
return x return x
class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'):
super(MixConv2d, self).__init__()
groups = len(k)
if method == 'equal_ch': # equal channels per group
i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices
ch = [(i == g).sum() for g in range(groups)]
else: # 'equal_params': equal parameter count per group
b = [out_ch] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b
self.m = nn.ModuleList([torch.nn.Conv2d(in_channels=in_ch,
out_channels=ch[g],
kernel_size=k[g],
stride=stride,
padding=(k[g] - 1) // 2, # 'same' pad
dilation=dilation,
bias=bias) for g in range(groups)])
def forward(self, x):
return torch.cat([m(x) for m in self.m], 1)
# Activation functions below -------------------------------------------------------------------------------------------
class SwishImplementation(torch.autograd.Function): class SwishImplementation(torch.autograd.Function):
@staticmethod @staticmethod
def forward(ctx, i): def forward(ctx, i):

View File

@ -27,7 +27,7 @@ def parse_model_cfg(path):
if key == 'anchors': # return nparray if key == 'anchors': # return nparray
mdefs[-1][key] = np.array([float(x) for x in val.split(',')]).reshape((-1, 2)) # np anchors mdefs[-1][key] = np.array([float(x) for x in val.split(',')]).reshape((-1, 2)) # np anchors
elif key in ['from', 'layers', 'mask']: # return array elif (key in ['from', 'layers', 'mask']) or (key == 'size' and ',' in val): # return array
mdefs[-1][key] = [int(x) for x in val.split(',')] mdefs[-1][key] = [int(x) for x in val.split(',')]
else: else:
val = val.strip() val = val.strip()