car-detection-bayes/detect.py

146 lines
5.9 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
import time
from models import *
from utils.datasets import *
from utils.utils import *
cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if cuda else 'cpu')
parser = argparse.ArgumentParser()
# Get data configuration
parser.add_argument('-image_folder', type=str, default='data/samples', help='path to images')
parser.add_argument('-output_folder', type=str, default='output', help='path to outputs')
parser.add_argument('-plot_flag', type=bool, default=True)
parser.add_argument('-txt_out', type=bool, default=False)
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
2018-09-10 13:50:37 +00:00
parser.add_argument('-conf_thres', type=float, default=0.9, help='object confidence threshold')
2018-09-05 12:59:49 +00:00
parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
2018-08-26 08:51:39 +00:00
parser.add_argument('-batch_size', type=int, default=1, help='size of the batches')
parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension')
opt = parser.parse_args()
print(opt)
def detect(opt):
os.system('rm -rf ' + opt.output_folder)
os.makedirs(opt.output_folder, exist_ok=True)
# Load model
model = Darknet(opt.cfg, opt.img_size)
2018-09-05 12:59:49 +00:00
#weights_path = 'checkpoints/yolov3.weights'
2018-09-10 13:50:37 +00:00
weights_path = 'checkpoints/yolov3.pt'
2018-08-26 08:51:39 +00:00
if weights_path.endswith('.weights'): # saved in darknet format
load_weights(model, weights_path)
else: # endswith('.pt'), saved in pytorch format
checkpoint = torch.load(weights_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
del checkpoint
# current = model.state_dict()
# saved = checkpoint['model']
# # 1. filter out unnecessary keys
# saved = {k: v for k, v in saved.items() if ((k in current) and (current[k].shape == v.shape))}
# # 2. overwrite entries in the existing state dict
# current.update(saved)
# # 3. load the new state dict
# model.load_state_dict(current)
# model.to(device).eval()
# del checkpoint, current, saved
model.to(device).eval()
# Set Dataloader
classes = load_classes(opt.class_path) # Extracts class labels from file
2018-09-02 09:38:39 +00:00
dataloader = load_images(opt.image_folder, batch_size=opt.batch_size, img_size=opt.img_size)
2018-08-26 08:51:39 +00:00
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
prev_time = time.time()
for batch_i, (img_paths, img) in enumerate(dataloader):
print(batch_i, img.shape, end=' ')
# Get detections
with torch.no_grad():
chip = torch.from_numpy(img).unsqueeze(0).to(device)
pred = model(chip)
pred = pred[pred[:, :, 4] > opt.conf_thres]
if len(pred) > 0:
2018-09-02 09:15:39 +00:00
detections = non_max_suppression(pred.unsqueeze(0), opt.conf_thres, opt.nms_thres)
img_detections.extend(detections)
imgs.extend(img_paths)
2018-08-26 08:51:39 +00:00
print('Batch %d... (Done %.3fs)' % (batch_i, time.time() - prev_time))
prev_time = time.time()
# Bounding-box colors
color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
if len(img_detections) == 0:
return
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("image %g: '%s'" % (img_i, path))
if opt.plot_flag:
img = cv2.imread(path)
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (opt.img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (opt.img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = opt.img_size - pad_y
unpad_w = opt.img_size - pad_x
# Draw bounding boxes and labels of detections
if detections is not None:
unique_classes = detections[:, -1].cpu().unique()
bbox_colors = random.sample(color_list, len(unique_classes))
# write results to .txt file
results_img_path = os.path.join(opt.output_folder, path.split('/')[-1])
results_txt_path = results_img_path + '.txt'
if os.path.isfile(results_txt_path):
os.remove(results_txt_path)
for i in unique_classes:
n = (detections[:, -1].cpu() == i).sum()
print('%g %ss' % (n, classes[int(i)]))
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * img.shape[0]
box_w = ((x2 - x1) / unpad_w) * img.shape[1]
y1 = (((y1 - pad_y // 2) / unpad_h) * img.shape[0]).round().item()
x1 = (((x1 - pad_x // 2) / unpad_w) * img.shape[1]).round().item()
x2 = (x1 + box_w).round().item()
y2 = (y1 + box_h).round().item()
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), max(x2, 0), max(y2, 0)
# write to file
if opt.txt_out:
with open(results_txt_path, 'a') as file:
file.write(('%g %g %g %g %g %g \n') % (x1, y1, x2, y2, cls_pred, cls_conf * conf))
if opt.plot_flag:
# Add the bbox to the plot
2018-09-05 12:59:49 +00:00
label = '%s %.2f' % (classes[int(cls_pred)], conf)
2018-08-26 08:51:39 +00:00
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
2018-09-08 12:46:22 +00:00
plot_one_box([x1, y1, x2, y2], img, label=label, color=color)
2018-08-26 08:51:39 +00:00
if opt.plot_flag:
# Save generated image with detections
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
if __name__ == '__main__':
torch.cuda.empty_cache()
detect(opt)