2018-08-26 08:51:39 +00:00
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
|
2019-02-12 17:05:58 +00:00
|
|
|
import test # Import test.py to get mAP after each epoch
|
2018-08-26 08:51:39 +00:00
|
|
|
from models import *
|
|
|
|
from utils.datasets import *
|
|
|
|
from utils.utils import *
|
|
|
|
|
2018-12-05 13:31:08 +00:00
|
|
|
|
|
|
|
def train(
|
2019-02-08 21:43:05 +00:00
|
|
|
cfg,
|
|
|
|
data_cfg,
|
2018-12-10 12:19:13 +00:00
|
|
|
img_size=416,
|
|
|
|
resume=False,
|
|
|
|
epochs=100,
|
|
|
|
batch_size=16,
|
2018-12-16 14:16:19 +00:00
|
|
|
accumulated_batches=1,
|
2019-02-08 21:43:05 +00:00
|
|
|
weights='weights',
|
2018-12-10 12:19:13 +00:00
|
|
|
multi_scale=False,
|
|
|
|
freeze_backbone=True,
|
|
|
|
var=0,
|
2018-12-05 13:31:08 +00:00
|
|
|
):
|
2018-12-05 10:55:27 +00:00
|
|
|
device = torch_utils.select_device()
|
|
|
|
|
2018-12-28 19:09:06 +00:00
|
|
|
if multi_scale: # pass maximum multi_scale size
|
|
|
|
img_size = 608
|
|
|
|
else:
|
2019-02-10 21:01:53 +00:00
|
|
|
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2019-02-09 18:29:19 +00:00
|
|
|
latest = os.path.join(weights, 'latest.pt')
|
|
|
|
best = os.path.join(weights, 'best.pt')
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Configure run
|
2019-02-11 21:44:25 +00:00
|
|
|
train_path = parse_data_cfg(data_cfg)['train']
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Initialize model
|
2019-02-08 21:43:05 +00:00
|
|
|
model = Darknet(cfg, img_size)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Get dataloader
|
2019-02-11 11:44:12 +00:00
|
|
|
dataloader = LoadImagesAndLabels(train_path, batch_size, img_size, multi_scale=multi_scale, augment=True)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2018-11-27 17:14:48 +00:00
|
|
|
lr0 = 0.001
|
2018-12-05 13:31:08 +00:00
|
|
|
if resume:
|
2019-02-09 18:29:19 +00:00
|
|
|
checkpoint = torch.load(latest, map_location='cpu')
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2019-02-16 13:33:52 +00:00
|
|
|
# Load weights to resume from
|
2018-08-26 08:51:39 +00:00
|
|
|
model.load_state_dict(checkpoint['model'])
|
2019-02-16 13:33:52 +00:00
|
|
|
|
|
|
|
# if torch.cuda.device_count() > 1:
|
|
|
|
# model = nn.DataParallel(model)
|
2018-08-26 08:51:39 +00:00
|
|
|
model.to(device).train()
|
|
|
|
|
2018-09-28 12:26:46 +00:00
|
|
|
# # Transfer learning (train only YOLO layers)
|
2018-08-26 08:51:39 +00:00
|
|
|
# for i, (name, p) in enumerate(model.named_parameters()):
|
|
|
|
# if p.shape[0] != 650: # not YOLO layer
|
|
|
|
# p.requires_grad = False
|
|
|
|
|
|
|
|
# Set optimizer
|
2019-02-11 17:15:51 +00:00
|
|
|
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2018-09-24 19:25:17 +00:00
|
|
|
start_epoch = checkpoint['epoch'] + 1
|
2018-09-24 01:06:04 +00:00
|
|
|
if checkpoint['optimizer'] is not None:
|
|
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
|
|
best_loss = checkpoint['best_loss']
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
del checkpoint # current, saved
|
2018-10-30 14:18:52 +00:00
|
|
|
|
2018-08-26 08:51:39 +00:00
|
|
|
else:
|
2018-11-27 17:14:48 +00:00
|
|
|
start_epoch = 0
|
|
|
|
best_loss = float('inf')
|
|
|
|
|
2018-10-30 14:18:52 +00:00
|
|
|
# Initialize model with darknet53 weights (optional)
|
2019-02-08 21:43:05 +00:00
|
|
|
load_darknet_weights(model, os.path.join(weights, 'darknet53.conv.74'))
|
2018-10-30 14:18:52 +00:00
|
|
|
|
2019-02-16 13:33:52 +00:00
|
|
|
# if torch.cuda.device_count() > 1:
|
|
|
|
# model = nn.DataParallel(model)
|
2018-08-26 08:51:39 +00:00
|
|
|
model.to(device).train()
|
2018-09-20 16:03:19 +00:00
|
|
|
|
|
|
|
# Set optimizer
|
2019-02-11 17:15:51 +00:00
|
|
|
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=lr0, momentum=.9)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Set scheduler
|
2018-09-24 23:29:35 +00:00
|
|
|
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[54, 61], gamma=0.1)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2018-10-10 14:16:17 +00:00
|
|
|
model_info(model)
|
2018-12-28 19:09:06 +00:00
|
|
|
t0 = time.time()
|
2018-12-05 13:31:08 +00:00
|
|
|
for epoch in range(epochs):
|
2018-08-26 08:51:39 +00:00
|
|
|
epoch += start_epoch
|
|
|
|
|
2019-02-19 18:55:33 +00:00
|
|
|
print(('%8s%12s' + '%10s' * 7) % (
|
|
|
|
'Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'nTargets', 'time'))
|
2018-12-11 20:49:56 +00:00
|
|
|
|
2018-09-20 16:03:19 +00:00
|
|
|
# Update scheduler (automatic)
|
2018-08-26 08:51:39 +00:00
|
|
|
# scheduler.step()
|
2018-09-20 16:03:19 +00:00
|
|
|
|
2018-11-05 08:07:15 +00:00
|
|
|
# Update scheduler (manual) at 0, 54, 61 epochs to 1e-3, 1e-4, 1e-5
|
2018-11-14 15:14:41 +00:00
|
|
|
if epoch > 50:
|
2018-11-27 17:14:48 +00:00
|
|
|
lr = lr0 / 10
|
2018-11-14 23:57:15 +00:00
|
|
|
else:
|
2018-11-27 17:14:48 +00:00
|
|
|
lr = lr0
|
2018-09-24 23:29:35 +00:00
|
|
|
for g in optimizer.param_groups:
|
|
|
|
g['lr'] = lr
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2019-02-10 20:34:15 +00:00
|
|
|
# Freeze darknet53.conv.74 for first epoch
|
2018-12-12 16:26:46 +00:00
|
|
|
if freeze_backbone:
|
2018-11-27 17:14:48 +00:00
|
|
|
if epoch == 0:
|
|
|
|
for i, (name, p) in enumerate(model.named_parameters()):
|
|
|
|
if int(name.split('.')[1]) < 75: # if layer < 75
|
|
|
|
p.requires_grad = False
|
|
|
|
elif epoch == 1:
|
|
|
|
for i, (name, p) in enumerate(model.named_parameters()):
|
|
|
|
if int(name.split('.')[1]) < 75: # if layer < 75
|
|
|
|
p.requires_grad = True
|
|
|
|
|
2018-08-26 08:51:39 +00:00
|
|
|
ui = -1
|
|
|
|
rloss = defaultdict(float) # running loss
|
2018-10-09 17:22:33 +00:00
|
|
|
optimizer.zero_grad()
|
2018-08-26 08:51:39 +00:00
|
|
|
for i, (imgs, targets) in enumerate(dataloader):
|
2018-09-19 02:21:46 +00:00
|
|
|
if sum([len(x) for x in targets]) < 1: # if no targets continue
|
|
|
|
continue
|
|
|
|
|
2018-09-20 16:03:19 +00:00
|
|
|
# SGD burn-in
|
2018-09-24 19:25:17 +00:00
|
|
|
if (epoch == 0) & (i <= 1000):
|
2018-11-27 17:14:48 +00:00
|
|
|
lr = lr0 * (i / 1000) ** 4
|
2018-09-24 19:25:17 +00:00
|
|
|
for g in optimizer.param_groups:
|
|
|
|
g['lr'] = lr
|
2018-09-20 16:03:19 +00:00
|
|
|
|
|
|
|
# Compute loss, compute gradient, update parameters
|
2019-02-10 21:01:53 +00:00
|
|
|
loss = model(imgs.to(device), targets, var=var)
|
2018-09-19 02:21:46 +00:00
|
|
|
loss.backward()
|
2018-10-09 17:22:33 +00:00
|
|
|
|
2018-12-16 14:16:19 +00:00
|
|
|
# accumulate gradient for x batches before optimizing
|
|
|
|
if ((i + 1) % accumulated_batches == 0) or (i == len(dataloader) - 1):
|
|
|
|
optimizer.step()
|
|
|
|
optimizer.zero_grad()
|
2018-09-19 02:21:46 +00:00
|
|
|
|
2018-11-22 13:14:19 +00:00
|
|
|
# Running epoch-means of tracked metrics
|
2018-09-19 02:21:46 +00:00
|
|
|
ui += 1
|
|
|
|
for key, val in model.losses.items():
|
|
|
|
rloss[key] = (rloss[key] * ui + val) / (ui + 1)
|
|
|
|
|
2019-02-19 18:55:33 +00:00
|
|
|
s = ('%8s%12s' + '%10.3g' * 7) % (
|
|
|
|
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, len(dataloader) - 1), rloss['xy'],
|
|
|
|
rloss['wh'], rloss['conf'], rloss['cls'],
|
2019-02-10 21:01:53 +00:00
|
|
|
rloss['loss'], model.losses['nT'], time.time() - t0)
|
2018-12-28 19:09:06 +00:00
|
|
|
t0 = time.time()
|
2018-09-19 02:21:46 +00:00
|
|
|
print(s)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Update best loss
|
2018-09-19 02:21:46 +00:00
|
|
|
loss_per_target = rloss['loss'] / rloss['nT']
|
2018-08-26 08:51:39 +00:00
|
|
|
if loss_per_target < best_loss:
|
|
|
|
best_loss = loss_per_target
|
|
|
|
|
|
|
|
# Save latest checkpoint
|
|
|
|
checkpoint = {'epoch': epoch,
|
|
|
|
'best_loss': best_loss,
|
|
|
|
'model': model.state_dict(),
|
|
|
|
'optimizer': optimizer.state_dict()}
|
2019-02-09 18:29:19 +00:00
|
|
|
torch.save(checkpoint, latest)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
# Save best checkpoint
|
|
|
|
if best_loss == loss_per_target:
|
2019-02-09 18:29:19 +00:00
|
|
|
os.system('cp ' + latest + ' ' + best)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2019-02-20 17:41:31 +00:00
|
|
|
# Save backup weights every 5 epochs (optional)
|
2019-02-20 16:44:41 +00:00
|
|
|
# if (epoch > 0) & (epoch % 5 == 0):
|
|
|
|
# os.system('cp ' + latest + ' ' + os.path.join(weights, 'backup{}.pt'.format(epoch)))
|
2018-08-26 08:51:39 +00:00
|
|
|
|
2018-11-14 15:14:41 +00:00
|
|
|
# Calculate mAP
|
2019-02-10 20:10:50 +00:00
|
|
|
with torch.no_grad():
|
|
|
|
mAP, R, P = test.test(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size)
|
2018-11-14 15:14:41 +00:00
|
|
|
|
|
|
|
# Write epoch results
|
|
|
|
with open('results.txt', 'a') as file:
|
2018-11-22 12:52:22 +00:00
|
|
|
file.write(s + '%11.3g' * 3 % (mAP, P, R) + '\n')
|
2018-11-14 15:14:41 +00:00
|
|
|
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2018-12-05 13:31:08 +00:00
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
|
|
|
|
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
2018-12-16 14:16:19 +00:00
|
|
|
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
|
2018-12-05 13:31:08 +00:00
|
|
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
2019-02-11 21:44:25 +00:00
|
|
|
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
|
2018-12-10 12:19:13 +00:00
|
|
|
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
2018-12-05 13:31:08 +00:00
|
|
|
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
|
2019-02-08 21:43:05 +00:00
|
|
|
parser.add_argument('--weights', type=str, default='weights', help='path to store weights')
|
2018-12-05 13:34:53 +00:00
|
|
|
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
2019-02-10 21:01:53 +00:00
|
|
|
parser.add_argument('--var', type=float, default=0, help='test variable')
|
2018-12-05 13:31:08 +00:00
|
|
|
opt = parser.parse_args()
|
|
|
|
print(opt, end='\n\n')
|
|
|
|
|
2018-12-05 10:55:27 +00:00
|
|
|
init_seeds()
|
|
|
|
|
2018-12-05 13:31:08 +00:00
|
|
|
train(
|
|
|
|
opt.cfg,
|
2019-02-08 21:43:05 +00:00
|
|
|
opt.data_cfg,
|
2018-12-05 13:31:08 +00:00
|
|
|
img_size=opt.img_size,
|
|
|
|
resume=opt.resume,
|
|
|
|
epochs=opt.epochs,
|
|
|
|
batch_size=opt.batch_size,
|
2018-12-16 14:16:19 +00:00
|
|
|
accumulated_batches=opt.accumulated_batches,
|
2019-02-08 21:43:05 +00:00
|
|
|
weights=opt.weights,
|
2018-12-05 13:31:08 +00:00
|
|
|
multi_scale=opt.multi_scale,
|
|
|
|
var=opt.var,
|
|
|
|
)
|