car-detection-bayes/train.py

387 lines
16 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
import time
import torch.distributed as dist
2019-04-17 13:52:51 +00:00
import torch.optim as optim
2019-05-30 17:02:55 +00:00
import torch.optim.lr_scheduler as lr_scheduler
2019-03-21 12:48:40 +00:00
from torch.utils.data import DataLoader
2019-06-24 11:43:17 +00:00
import test # import test.py to get mAP after each epoch
2018-08-26 08:51:39 +00:00
from models import *
from utils.datasets import *
from utils.utils import *
2019-07-08 13:02:20 +00:00
# 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False
2019-07-05 09:41:43 +00:00
hyp = {'giou': 1.666, # giou loss gain
2019-07-04 19:34:33 +00:00
'xy': 4.062, # xy loss gain
'wh': 0.1845, # wh loss gain
2019-07-11 09:56:46 +00:00
'cls': 42.6, # cls loss gain
2019-07-05 09:41:43 +00:00
'cls_pw': 3.34, # cls BCELoss positive_weight
'obj': 12.61, # obj loss gain
'obj_pw': 8.338, # obj BCELoss positive_weight
'iou_t': 0.2705, # iou target-anchor training threshold
2019-05-23 10:27:46 +00:00
'lr0': 0.001, # initial learning rate
'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
'momentum': 0.90, # SGD momentum
'weight_decay': 0.0005} # optimizer weight decay
2019-04-17 14:15:08 +00:00
2019-06-30 15:34:29 +00:00
def train(
2019-02-08 21:43:05 +00:00
cfg,
data_cfg,
2018-12-10 12:19:13 +00:00
img_size=416,
2019-06-30 15:47:10 +00:00
epochs=100, # 500200 batches at bs 16, 117263 images = 273 epochs
2019-07-10 17:48:29 +00:00
batch_size=16,
accumulate=4, # effective bs = batch_size * accumulate = 8 * 8 = 64
2019-02-21 15:18:11 +00:00
freeze_backbone=False,
):
2019-04-17 15:27:51 +00:00
init_seeds()
2019-02-21 14:57:18 +00:00
weights = 'weights' + os.sep
latest = weights + 'latest.pt'
best = weights + 'best.pt'
device = torch_utils.select_device()
2019-07-10 18:47:05 +00:00
multi_scale = opt.multi_scale
2019-06-13 16:13:30 +00:00
if multi_scale:
2019-06-12 11:04:58 +00:00
img_size_min = round(img_size / 32 / 1.5)
img_size_max = round(img_size / 32 * 1.5)
img_size = img_size_max * 32 # initiate with maximum multi_scale size
2018-08-26 08:51:39 +00:00
# Configure run
2019-04-27 15:57:07 +00:00
data_dict = parse_data_cfg(data_cfg)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
2018-08-26 08:51:39 +00:00
# Initialize model
2019-06-12 11:04:58 +00:00
model = Darknet(cfg).to(device)
2018-08-26 08:51:39 +00:00
# Optimizer
2019-04-17 13:52:51 +00:00
optimizer = optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
2018-08-26 08:51:39 +00:00
2019-02-21 14:57:18 +00:00
cutoff = -1 # backbone reaches to cutoff layer
2019-02-22 15:15:20 +00:00
start_epoch = 0
2019-07-02 16:21:28 +00:00
best_fitness = 0.0
2019-07-01 12:48:44 +00:00
if opt.resume or opt.transfer: # Load previously saved model
if opt.transfer: # Transfer learning
2019-07-08 16:00:19 +00:00
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
2019-04-13 18:32:29 +00:00
chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
2019-04-03 09:31:31 +00:00
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
2019-04-03 09:07:31 +00:00
strict=False)
2019-07-08 16:00:19 +00:00
2019-04-03 09:07:31 +00:00
for p in model.parameters():
2019-04-02 16:04:04 +00:00
p.requires_grad = True if p.shape[0] == nf else False
else: # resume from latest.pt
2019-07-08 16:32:31 +00:00
if opt.bucket:
os.system('gsutil cp gs://%s/latest.pt %s' % (opt.bucket, latest)) # download from bucket
2019-04-02 16:04:04 +00:00
chkpt = torch.load(latest, map_location=device) # load checkpoint
model.load_state_dict(chkpt['model'])
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
2019-07-02 16:21:28 +00:00
best_fitness = chkpt['best_fitness']
2019-07-08 16:00:19 +00:00
2019-07-08 17:26:46 +00:00
if chkpt['training_results'] is not None:
with open('results.txt', 'w') as file:
file.write(chkpt['training_results']) # write results.txt
2019-07-08 16:00:19 +00:00
start_epoch = chkpt['epoch'] + 1
2019-04-02 16:04:04 +00:00
del chkpt
2018-10-30 14:18:52 +00:00
else: # Initialize model with backbone (optional)
2019-04-02 16:50:55 +00:00
if '-tiny.cfg' in cfg:
2019-03-19 08:38:32 +00:00
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
2019-04-02 16:50:55 +00:00
else:
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
2018-10-30 14:18:52 +00:00
2019-06-16 21:17:40 +00:00
# Remove old results
for f in glob.glob('*_batch*.jpg') + glob.glob('results.txt'):
os.remove(f)
2019-04-24 10:58:14 +00:00
# Scheduler https://github.com/ultralytics/yolov3/issues/238
2019-04-17 13:52:51 +00:00
# lf = lambda x: 1 - x / epochs # linear ramp to zero
2019-04-24 11:30:24 +00:00
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
2019-05-30 17:02:55 +00:00
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in (0.8, 0.9)], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
2019-04-18 19:56:50 +00:00
2019-04-24 10:58:14 +00:00
# # Plot lr schedule
2019-04-18 19:44:57 +00:00
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
2019-04-24 10:58:14 +00:00
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
2019-06-21 11:19:23 +00:00
# plt.ylabel('LR')
2019-04-24 10:58:14 +00:00
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
2019-04-17 14:15:08 +00:00
# Dataset
2019-05-21 15:37:34 +00:00
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
2019-07-08 13:02:20 +00:00
rect=opt.rect) # rectangular training
# Initialize distributed training
if torch.cuda.device_count() > 1:
2019-07-01 12:48:44 +00:00
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model)
2019-04-22 21:27:31 +00:00
# sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# Dataloader
dataloader = DataLoader(dataset,
batch_size=batch_size,
2019-04-17 16:40:12 +00:00
num_workers=opt.num_workers,
2019-07-08 13:02:20 +00:00
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
2019-04-15 17:25:36 +00:00
pin_memory=True,
2019-04-22 21:27:31 +00:00
collate_fn=dataset.collate_fn)
2018-08-26 08:51:39 +00:00
2019-04-13 14:02:45 +00:00
# Mixed precision training https://github.com/NVIDIA/apex
2019-06-30 13:24:34 +00:00
mixed_precision = True
if mixed_precision:
try:
from apex import amp
2019-07-08 13:24:20 +00:00
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
2019-06-30 13:24:34 +00:00
except: # not installed: install help: https://github.com/NVIDIA/apex/issues/259
mixed_precision = False
2019-05-23 10:32:11 +00:00
2019-03-07 16:16:38 +00:00
# Start training
2019-04-17 13:52:51 +00:00
model.hyp = hyp # attach hyperparameters to model
2019-06-25 09:54:19 +00:00
# model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
2019-06-24 11:43:17 +00:00
model_info(model, report='summary') # 'full' or 'summary'
2019-04-17 13:52:51 +00:00
nb = len(dataloader)
2019-05-10 12:15:09 +00:00
maps = np.zeros(nc) # mAP per class
2019-04-17 14:15:08 +00:00
results = (0, 0, 0, 0, 0) # P, R, mAP, F1, test_loss
2019-04-17 13:52:51 +00:00
n_burnin = min(round(nb / 5 + 1), 1000) # burn-in batches
2019-05-08 15:29:23 +00:00
t, t0 = time.time(), time.time()
for epoch in range(start_epoch, epochs):
model.train()
2019-06-30 15:34:29 +00:00
print(('\n%8s%12s' + '%10s' * 7) %
2019-07-08 13:43:46 +00:00
('Epoch', 'Batch', 'GIoU/xy', 'wh', 'obj', 'cls', 'total', 'targets', 'img_size'))
2018-09-20 16:03:19 +00:00
# Update scheduler
scheduler.step()
2018-08-26 08:51:39 +00:00
2019-05-23 10:32:11 +00:00
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
2019-03-19 08:38:32 +00:00
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
2019-02-21 14:57:18 +00:00
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
2018-11-27 17:14:48 +00:00
2019-06-12 09:25:56 +00:00
# # Update image weights (optional)
# w = model.class_weights.cpu().numpy() * (1 - maps) # class weights
# image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
# dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # random weighted index
2019-05-10 12:15:09 +00:00
2019-04-17 13:52:51 +00:00
mloss = torch.zeros(5).to(device) # mean losses
2019-06-30 15:34:29 +00:00
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
2019-07-07 21:24:34 +00:00
for i, (imgs, targets, paths, _) in pbar:
imgs = imgs.to(device)
targets = targets.to(device)
2018-09-19 02:21:46 +00:00
2019-07-03 14:17:46 +00:00
# Multi-Scale training TODO: short-side to 32-multiple https://github.com/ultralytics/yolov3/issues/358
2019-06-13 16:13:30 +00:00
if multi_scale:
2019-06-30 15:34:29 +00:00
if (i + nb * epoch) / accumulate % 10 == 0: #  adjust (67% - 150%) every 10 batches
2019-06-12 11:04:58 +00:00
img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
2019-06-30 15:34:29 +00:00
# print('img_size = %g' % img_size)
2019-06-12 11:04:58 +00:00
scale_factor = img_size / max(imgs.shape[-2:])
imgs = F.interpolate(imgs, scale_factor=scale_factor, mode='bilinear', align_corners=False)
2019-03-21 20:41:12 +00:00
# Plot images with bounding boxes
2019-04-09 10:24:01 +00:00
if epoch == 0 and i == 0:
2019-07-07 21:24:34 +00:00
plot_images(imgs=imgs, targets=targets, paths=paths, fname='train_batch%g.jpg' % i)
2019-03-21 20:41:12 +00:00
2018-09-20 16:03:19 +00:00
# SGD burn-in
if epoch == 0 and i <= n_burnin:
2019-04-17 13:52:51 +00:00
lr = hyp['lr0'] * (i / n_burnin) ** 4
2019-03-19 08:38:32 +00:00
for x in optimizer.param_groups:
x['lr'] = lr
2018-09-20 16:03:19 +00:00
# Run model
pred = model(imgs)
2019-03-07 16:16:38 +00:00
# Compute loss
2019-07-04 22:36:37 +00:00
loss, loss_items = compute_loss(pred, targets, model, giou_loss=not opt.xywh)
2019-04-17 16:33:16 +00:00
if torch.isnan(loss):
print('WARNING: nan loss detected, ending training')
return results
2019-03-07 16:16:38 +00:00
# Compute gradient
2019-04-13 14:02:45 +00:00
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
2018-10-09 17:22:33 +00:00
2019-03-07 16:16:38 +00:00
# Accumulate gradient for x batches before optimizing
2019-04-17 13:52:51 +00:00
if (i + 1) % accumulate == 0 or (i + 1) == nb:
2018-12-16 14:16:19 +00:00
optimizer.step()
optimizer.zero_grad()
2018-09-19 02:21:46 +00:00
2019-04-15 11:55:52 +00:00
# Print batch results
2019-05-23 10:32:11 +00:00
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
2019-06-30 15:34:29 +00:00
# s = ('%8s%12s' + '%10.3g' * 7) % ('%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), time.time() - t)
2019-02-19 18:55:33 +00:00
s = ('%8s%12s' + '%10.3g' * 7) % (
2019-06-30 15:34:29 +00:00
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), img_size)
t = time.time()
2019-06-30 15:34:29 +00:00
pbar.set_description(s) # print(s)
2018-08-26 08:51:39 +00:00
2019-06-21 09:57:26 +00:00
# Report time
dt = (time.time() - t0) / 3600
print('%g epochs completed in %.3f hours.' % (epoch - start_epoch + 1, dt))
2019-04-17 15:42:17 +00:00
# Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
2019-05-10 12:15:09 +00:00
if not (opt.notest or (opt.nosave and epoch < 10)) or epoch == epochs - 1:
2019-04-17 15:35:00 +00:00
with torch.no_grad():
2019-07-08 13:24:20 +00:00
results, maps = test.test(cfg, data_cfg, batch_size=batch_size, img_size=opt.img_size, model=model,
2019-06-12 09:55:20 +00:00
conf_thres=0.1)
2019-04-05 13:34:42 +00:00
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 5 % results + '\n') # P, R, mAP, F1, test_loss
# Update best map
2019-07-02 16:21:28 +00:00
fitness = results[2]
if fitness > best_fitness:
best_fitness = fitness
2019-03-19 08:38:32 +00:00
# Save training results
2019-07-08 17:26:46 +00:00
save = (not opt.nosave) or ((not opt.evolve) and (epoch == epochs - 1))
if save:
2019-07-08 16:00:19 +00:00
with open('results.txt', 'r') as file:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': file.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
2019-04-05 13:34:42 +00:00
# Save latest checkpoint
2019-04-02 16:04:04 +00:00
torch.save(chkpt, latest)
2019-07-08 16:32:31 +00:00
if opt.bucket:
os.system('gsutil cp %s gs://%s' % (latest, opt.bucket)) # upload to bucket
# Save best checkpoint
2019-07-02 16:21:28 +00:00
if best_fitness == fitness:
2019-04-02 16:04:04 +00:00
torch.save(chkpt, best)
2019-04-02 16:04:04 +00:00
# Save backup every 10 epochs (optional)
2019-04-02 12:07:14 +00:00
if epoch > 0 and epoch % 10 == 0:
2019-04-02 16:04:04 +00:00
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
2019-04-02 14:33:52 +00:00
2019-04-05 13:34:42 +00:00
# Delete checkpoint
2019-04-02 16:04:04 +00:00
del chkpt
2018-08-26 08:51:39 +00:00
2019-04-17 14:15:08 +00:00
return results
2018-08-26 08:51:39 +00:00
2019-04-18 13:17:31 +00:00
def print_mutation(hyp, results):
# Write mutation results
2019-04-18 13:18:09 +00:00
a = '%11s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
2019-04-18 13:24:58 +00:00
b = '%11.4g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%11.3g' * len(results) % results # results (P, R, mAP, F1, test_loss)
2019-04-18 13:18:09 +00:00
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
2019-07-01 13:21:06 +00:00
2019-07-08 16:32:31 +00:00
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt
2019-07-05 10:33:37 +00:00
with open('evolve.txt', 'a') as f: # append result
2019-07-01 15:14:42 +00:00
f.write(c + b + '\n')
2019-07-08 16:32:31 +00:00
os.system('gsutil cp evolve.txt gs://%s' % opt.bucket) # upload evolve.txt
2019-07-01 15:14:42 +00:00
else:
with open('evolve.txt', 'a') as f:
f.write(c + b + '\n')
2019-07-01 13:21:06 +00:00
2019-04-18 13:17:31 +00:00
2018-08-26 08:51:39 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2019-07-01 15:17:29 +00:00
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
2019-07-10 17:48:29 +00:00
parser.add_argument('--batch-size', type=int, default=16, help='batch size')
parser.add_argument('--accumulate', type=int, default=4, help='number of batches to accumulate before optimizing')
2019-04-03 12:25:31 +00:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
2019-07-01 13:23:30 +00:00
parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path')
2019-07-10 18:47:05 +00:00
parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes')
2019-05-23 10:27:46 +00:00
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
2019-07-08 13:02:20 +00:00
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training flag')
2019-04-02 16:04:04 +00:00
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
2019-06-21 08:58:12 +00:00
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
2019-06-24 12:46:00 +00:00
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
2019-04-17 15:27:51 +00:00
parser.add_argument('--notest', action='store_true', help='only test final epoch')
2019-07-04 22:36:37 +00:00
parser.add_argument('--xywh', action='store_true', help='use xywh loss instead of GIoU loss')
2019-07-01 15:17:29 +00:00
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
2019-07-08 16:32:31 +00:00
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
2019-04-17 13:52:51 +00:00
parser.add_argument('--var', default=0, type=int, help='debug variable')
opt = parser.parse_args()
2019-05-03 16:14:16 +00:00
print(opt)
2019-04-17 15:51:39 +00:00
if opt.evolve:
2019-06-24 12:46:00 +00:00
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
2019-04-17 15:51:39 +00:00
2019-04-17 15:27:51 +00:00
# Train
2019-07-01 12:48:44 +00:00
results = train(opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
2019-04-17 15:27:51 +00:00
# Evolve hyperparameters (optional)
if opt.evolve:
2019-05-30 23:33:17 +00:00
gen = 1000 # generations to evolve
2019-07-01 15:14:42 +00:00
print_mutation(hyp, results) # Write mutation results
2019-04-17 15:27:51 +00:00
for _ in range(gen):
2019-07-05 10:33:37 +00:00
# Get best hyperparameters
2019-07-01 15:14:42 +00:00
x = np.loadtxt('evolve.txt', ndmin=2)
2019-07-05 09:41:43 +00:00
fitness = x[:, 2] * 0.9 + x[:, 3] * 0.1 # fitness as weighted combination of mAP and F1
x = x[fitness.argmax()] # select best fitness hyps
2019-07-01 15:14:42 +00:00
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 5]
2019-04-17 15:27:51 +00:00
2019-07-01 15:14:42 +00:00
# Mutate
2019-04-17 16:48:08 +00:00
init_seeds(seed=int(time.time()))
2019-07-11 09:57:10 +00:00
s = [.1, .1, .1, .1, .1, .1, .1, .1, .2 * 0, .2 * 0, .05 * 0, .2 * 0] # fractional sigmas
2019-04-18 10:21:39 +00:00
for i, k in enumerate(hyp.keys()):
2019-06-30 22:41:13 +00:00
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
2019-07-01 15:17:29 +00:00
hyp[k] *= float(x) # vary by 20% 1sigma
2019-04-17 15:27:51 +00:00
2019-04-24 12:09:15 +00:00
# Clip to limits
2019-05-11 12:55:10 +00:00
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay']
2019-06-22 13:52:27 +00:00
limits = [(1e-4, 1e-2), (0, 0.70), (0.70, 0.98), (0, 0.01)]
2019-04-24 12:09:15 +00:00
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
2019-04-17 17:04:01 +00:00
2019-07-01 15:14:42 +00:00
# Train mutation
2019-07-01 12:48:44 +00:00
results = train(opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
2019-04-17 15:27:51 +00:00
# Write mutation results
2019-04-18 13:17:31 +00:00
print_mutation(hyp, results)
2019-04-17 15:27:51 +00:00
2019-05-08 11:31:49 +00:00
# # Plot results
# import numpy as np
# import matplotlib.pyplot as plt
# a = np.loadtxt('evolve_1000val.txt')
# x = a[:, 2] * a[:, 3] # metric = mAP * F1
# weights = (x - x.min()) ** 2
# fig = plt.figure(figsize=(14, 7))
# for i in range(len(hyp)):
# y = a[:, i + 5]
# mu = (y * weights).sum() / weights.sum()
# plt.subplot(2, 5, i+1)
# plt.plot(x.max(), mu, 'o')
# plt.plot(x, y, '.')
# print(list(hyp.keys())[i],'%.4g' % mu)