2019-02-13 21:15:30 +00:00
< table style = "width:100%" >
< tr >
2019-03-18 10:33:31 +00:00
< th > v2.2< img src = "https://user-images.githubusercontent.com/26833433/52743528-e6096300-2fe2-11e9-970c-5fee45769fab.jpg" width = "400" > < / th >
< th > v3.0< img src = "https://user-images.githubusercontent.com/26833433/54523854-227d0580-4979-11e9-9801-26a3be239875.jpg" width = "400" > < / th >
2019-04-08 12:06:36 +00:00
< th >
< a href = "https://www.ultralytics.com" target = "_blank" >
< img src = "https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width = "200" >
< / a >
< p >
< a href = "https://itunes.apple.com/app/id1452689527" target = "_blank" >
< img src = "https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width = "180" >
< / a >
< / p > < / th >
2019-02-13 21:15:30 +00:00
< / tr >
< / table >
2019-02-13 21:01:58 +00:00
2019-03-18 10:33:31 +00:00
2018-08-26 08:51:39 +00:00
# Introduction
2019-03-08 12:14:55 +00:00
This directory contains python software and an iOS App developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license** . For more information please visit https://www.ultralytics.com.
2018-08-26 08:51:39 +00:00
# Description
2019-03-28 12:46:23 +00:00
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.
2018-08-26 08:51:39 +00:00
# Requirements
2018-11-27 17:14:48 +00:00
Python 3.7 or later with the following `pip3 install -U -r requirements.txt` packages:
2018-08-26 08:51:39 +00:00
- `numpy`
2019-01-05 15:23:17 +00:00
- `torch >= 1.0.0`
2018-08-26 08:51:39 +00:00
- `opencv-python`
2019-03-25 13:59:38 +00:00
- `tqdm`
2018-08-26 08:51:39 +00:00
2019-03-05 15:23:33 +00:00
# Tutorials
2019-03-30 17:45:04 +00:00
* [GCP Quickstart ](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart )
2019-03-05 15:23:33 +00:00
* [Transfer Learning ](https://github.com/ultralytics/yolov3/wiki/Example:-Transfer-Learning )
* [Train Single Image ](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Image )
* [Train Single Class ](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class )
* [Train Custom Data ](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data )
2018-08-26 09:05:13 +00:00
# Training
2018-08-26 08:51:39 +00:00
2019-03-18 10:45:49 +00:00
**Start Training:** Run `train.py` to begin training after downloading COCO data with `data/get_coco_dataset.sh` .
2018-09-01 16:35:28 +00:00
2019-03-18 10:46:44 +00:00
**Resume Training:** Run `train.py --resume` resumes training from the latest checkpoint `weights/latest.pt` .
2018-09-01 16:35:28 +00:00
2019-04-10 11:51:33 +00:00
Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with **training speed of 0.6 s/batch on a 1080 Ti (18 epochs/day)** or 0.45 s/batch on a 2080 Ti.
2018-12-28 18:23:35 +00:00
2019-04-09 09:05:45 +00:00
Here we see training results from `coco_1img.data` , `coco_10img.data` and `coco_100img.data` , 3 example files available in the `data/` folder, which train and test on the first 1, 10 and 100 images of the coco2014 trainval dataset.
2019-02-27 13:07:04 +00:00
`from utils import utils; utils.plot_results()`
2019-04-09 09:05:45 +00:00
![results ](https://user-images.githubusercontent.com/26833433/55669383-df76c980-5876-11e9-9806-691bd507ee17.jpg )
2018-09-01 11:34:05 +00:00
2018-09-01 11:43:07 +00:00
## Image Augmentation
2018-09-01 11:34:05 +00:00
2018-09-01 16:57:18 +00:00
`datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.
2018-09-01 11:41:34 +00:00
Augmentation | Description
--- | ---
2018-12-28 18:23:35 +00:00
Translation | +/- 10% (vertical and horizontal)
2018-09-01 12:04:42 +00:00
Rotation | +/- 5 degrees
2018-12-28 18:23:35 +00:00
Shear | +/- 2 degrees (vertical and horizontal)
Scale | +/- 10%
2018-09-01 12:10:06 +00:00
Reflection | 50% probability (horizontal-only)
2018-09-01 12:04:42 +00:00
H**S**V Saturation | +/- 50%
HS**V** Intensity | +/- 50%
2018-09-01 11:34:05 +00:00
2018-12-28 18:52:25 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/50525037-6cbcbc00-0ad9-11e9-8c38-9fd51af530e0.jpg" >
2018-08-26 08:51:39 +00:00
2019-03-20 11:35:39 +00:00
## Speed
https://cloud.google.com/deep-learning-vm/
2019-03-25 13:59:38 +00:00
**Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory)
2019-03-20 11:35:39 +00:00
**CPU platform:** Intel Skylake
2019-03-30 17:45:04 +00:00
**GPUs:** K80 ($0.198/hr), P4 ($0.279/hr), T4 ($0.353/hr), P100 ($0.493/hr), V100 ($0.803/hr)
2019-03-20 11:35:39 +00:00
**HDD:** 100 GB SSD
2019-03-25 13:59:38 +00:00
**Dataset:** COCO train 2014
GPUs | `batch_size` | batch time | epoch time | epoch cost
--- |---| --- | --- | ---
< i > < / i > | (images) | (s/batch) | |
2019-03-30 17:45:04 +00:00
1 K80 | 16 | 1.43s | 175min | $0.58
1 P4 | 8 | 0.51s | 125min | $0.58
1 T4 | 16 | 0.78s | 94min | $0.55
2019-03-25 13:59:38 +00:00
1 P100 | 16 | 0.39s | 48min | $0.39
2 P100 | 32 | 0.48s | 29min | $0.47
4 P100 | 64 | 0.65s | 20min | $0.65
1 V100 | 16 | 0.25s | 31min | $0.41
2 V100 | 32 | 0.29s | 18min | $0.48
4 V100 | 64 | 0.41s | 13min | $0.70
8 V100 | 128 | 0.49s | 7min | $0.80
2019-03-20 11:35:39 +00:00
2018-08-26 09:05:13 +00:00
# Inference
2019-02-11 13:13:27 +00:00
Run `detect.py` to apply trained weights to an image, such as `zidane.jpg` from the `data/samples` folder:
2018-12-22 12:05:52 +00:00
2019-03-21 11:01:07 +00:00
**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights`
2019-03-21 11:00:24 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/50524393-b0adc200-0ad5-11e9-9335-4774a1e52374.jpg" width = "600" >
2018-12-22 12:05:52 +00:00
2019-03-21 11:01:07 +00:00
**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights`
2019-03-21 11:00:24 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/50374155-21427380-05ea-11e9-8d24-f1a4b2bac1ad.jpg" width = "600" >
2019-03-21 11:01:07 +00:00
**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights`
2019-03-21 11:00:24 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/54747926-e051ff00-4bd8-11e9-8b5d-93a41d871ec7.jpg" width = "600" >
2018-09-04 12:36:51 +00:00
2019-02-11 13:11:24 +00:00
## Webcam
2019-02-11 13:13:27 +00:00
Run `detect.py` with `webcam=True` to show a live webcam feed.
2019-02-11 13:11:24 +00:00
2018-12-22 11:49:55 +00:00
# Pretrained Weights
2018-12-22 11:58:59 +00:00
2019-03-20 12:08:24 +00:00
- Darknet `*.weights` format: https://pjreddie.com/media/files/yolov3.weights
- PyTorch `*.pt` format: https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI
2018-09-01 16:48:53 +00:00
2019-03-20 11:26:46 +00:00
# mAP
2019-03-20 12:08:24 +00:00
- Use `test.py --weights weights/yolov3.weights` to test the official YOLOv3 weights.
- Use `test.py --weights weights/latest.pt` to test the latest training results.
2019-03-30 17:45:04 +00:00
- Compare to darknet published results https://arxiv.org/abs/1804.02767.
<!-- -
2019-04-03 12:21:41 +00:00
%< i > < / i > | ultralytics/yolov3 OR-NMS 5:52@416 (`pycocotools`) | darknet
2019-03-30 17:45:04 +00:00
--- | --- | ---
YOLOv3-320 | 51.9 (51.4) | 51.5
YOLOv3-416 | 55.0 (54.9) | 55.3
YOLOv3-608 | 57.5 (57.8) | 57.9
2019-04-03 12:21:41 +00:00
< i > < / i > | ultralytics/yolov3 MERGE-NMS 7:15@416 (`pycocotools`) | darknet
2019-03-30 17:45:04 +00:00
--- | --- | ---
YOLOv3-320 | 52.3 (51.7) | 51.5
YOLOv3-416 | 55.4 (55.3) | 55.3
YOLOv3-608 | 57.9 (58.1) | 57.9
< i > < / i > | ultralytics/yolov3 MERGE+earlier_pred4 8:34@416 (`pycocotools`) | darknet
--- | --- | ---
YOLOv3-320 | 52.3 (51.8) | 51.5
YOLOv3-416 | 55.5 (55.4) | 55.3
YOLOv3-608 | 57.9 (58.2) | 57.9
--->
2019-04-03 12:22:32 +00:00
< i ></ i > | [ultralytics/yolov3 ](https://github.com/ultralytics/yolov3 ) | [darknet ](https://arxiv.org/abs/1804.02767 )
2019-03-30 17:45:04 +00:00
--- | --- | ---
2019-04-03 12:21:41 +00:00
`YOLOv3 320` | 51.8 | 51.5
`YOLOv3 416` | 55.4 | 55.3
`YOLOv3 608` | 58.2 | 57.9
`YOLOv3-spp 320` | 52.4 | -
`YOLOv3-spp 416` | 56.5 | -
`YOLOv3-spp 608` | 60.7 | 60.6
2019-03-20 11:26:46 +00:00
``` bash
sudo rm -rf yolov3 & & git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh
sudo rm -rf cocoapi & & git clone https://github.com/cocodataset/cocoapi & & cd cocoapi/PythonAPI & & make & & cd ../.. & & cp -r cocoapi/PythonAPI/pycocotools yolov3
2019-03-20 12:08:24 +00:00
cd yolov3
python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
2019-03-30 17:45:04 +00:00
Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
Image Total P R mAP
Calculating mAP: 100%|█████████████████████████████████| 313/313 [08:54< 00:00 , 1 . 55s / it ]
5000 5000 0.0966 0.786 0.579
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.582
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.198
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.427
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.437
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.463
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
2019-04-03 12:21:41 +00:00
python3 test.py --weights weights/yolov3-spp.weights --cfg cfg/yolov3-spp.cfg --save-json --img-size 608 --batch-size 8
Namespace(batch_size=8, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
Image Total P R mAP
Calculating mAP: 100%|█████████████████████████████████| 625/625 [07:01< 00:00 , 1 . 56it / s ]
5000 5000 0.12 0.81 0.611
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.366
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.607
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.386
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.207
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.485
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.296
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.464
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.494
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618
2019-03-20 11:26:46 +00:00
```
2018-08-26 08:51:39 +00:00
2019-04-03 10:42:40 +00:00
# Citation
[![DOI ](https://zenodo.org/badge/146165888.svg )](https://zenodo.org/badge/latestdoi/146165888)
2018-08-26 08:51:39 +00:00
# Contact
2019-04-04 15:34:11 +00:00
Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.