car-detection-bayes/Dockerfile

43 lines
1.5 KiB
Docker
Raw Normal View History

2019-08-29 16:58:09 +00:00
# Start from Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2019-08-31 11:39:14 +00:00
FROM nvcr.io/nvidia/pytorch:19.08-py3
2019-08-29 16:58:09 +00:00
2019-08-29 17:57:08 +00:00
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
2019-08-29 16:58:09 +00:00
2019-08-29 18:13:29 +00:00
# Install dependencies (pip or conda)
2019-08-29 17:57:08 +00:00
# RUN pip install -U -r requirements.txt
2019-08-29 18:13:29 +00:00
# RUN conda update -n base -c defaults conda
# RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow
# RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools
2019-08-29 17:57:08 +00:00
# conda install pytorch torchvision -c pytorch
2019-08-29 16:58:09 +00:00
# Install OpenCV with Gstreamer support
# ...
2019-08-29 16:58:09 +00:00
# Move model into container
# RUN mv yolov3-spp.pt ./weights
# --------------------------------------------------- Extras Below ---------------------------------------------------
# Build container
2019-08-29 18:13:29 +00:00
# rm -rf yolov3 # Warning: remove existing
# git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 detect.py
2019-08-31 12:53:17 +00:00
# sudo docker image prune -af && sudo docker build -t ultralytics/yolov3:v0 .
2019-08-29 16:58:09 +00:00
# Run container
# sudo nvidia-docker run --ipc=host ultralytics/yolov3:v0 python3 detect.py
# Run container with local directory access
# sudo nvidia-docker run --ipc=host --mount type=bind,source="$(pwd)"/coco,target=/usr/src/coco ultralytics/yolov3:v0 python3 train.py
2019-08-29 18:13:29 +00:00
2019-08-29 16:58:09 +00:00
# Push container to https://hub.docker.com/u/ultralytics
# docker push ultralytics/yolov3:v0
# Build and Push
# sudo docker build -t ultralytics/yolov3:v0 . && docker push ultralytics/yolov3:v0