car-detection-bayes/README.md

214 lines
10 KiB
Markdown
Raw Normal View History

2019-02-13 21:15:30 +00:00
<table style="width:100%">
<tr>
2019-04-15 12:45:43 +00:00
<td>
2019-07-21 12:28:02 +00:00
<img src="https://user-images.githubusercontent.com/26833433/61591130-f7beea00-abc2-11e9-9dc0-d6abcf41d713.jpg">
2019-04-15 12:45:43 +00:00
</td>
<td align="center">
<a href="https://www.ultralytics.com" target="_blank">
<img src="https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width="200"></a>
2019-07-21 12:28:02 +00:00
<img src="https://user-images.githubusercontent.com/26833433/61591093-2b4d4480-abc2-11e9-8b46-d88eb1dabba1.jpg">
<a href="https://itunes.apple.com/app/id1452689527" target="_blank">
2019-04-15 12:45:43 +00:00
<img src="https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width="180"></a>
</td>
<td>
2019-07-21 12:28:02 +00:00
<img src="https://user-images.githubusercontent.com/26833433/61591100-55066b80-abc2-11e9-9647-52c0e045b288.jpg">
2019-04-15 12:45:43 +00:00
</td>
2019-02-13 21:15:30 +00:00
</tr>
</table>
2019-02-13 21:01:58 +00:00
2019-04-26 10:01:43 +00:00
# Introduction
This directory contains PyTorch YOLOv3 software and an iOS App developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information please visit https://www.ultralytics.com.
2018-08-26 08:51:39 +00:00
# Description
2019-03-28 12:46:23 +00:00
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.
2018-08-26 08:51:39 +00:00
# Requirements
2018-11-27 17:14:48 +00:00
Python 3.7 or later with the following `pip3 install -U -r requirements.txt` packages:
2018-08-26 08:51:39 +00:00
- `numpy`
2019-05-29 00:02:41 +00:00
- `torch >= 1.1.0`
2018-08-26 08:51:39 +00:00
- `opencv-python`
- `tqdm`
2018-08-26 08:51:39 +00:00
2019-03-05 15:23:33 +00:00
# Tutorials
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
2019-03-05 15:23:33 +00:00
* [Transfer Learning](https://github.com/ultralytics/yolov3/wiki/Example:-Transfer-Learning)
* [Train Single Image](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Image)
* [Train Single Class](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class)
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data)
2019-05-28 14:14:37 +00:00
# Jupyter Notebook
2019-07-23 14:59:13 +00:00
Use our Jupyter [notebook](https://github.com/ultralytics/yolov3/blob/master/ultralytics_YOLOv3.ipynb) to quickly get started with training, inference and testing examples.
2019-05-28 14:14:37 +00:00
2018-08-26 09:05:13 +00:00
# Training
2018-08-26 08:51:39 +00:00
2019-04-18 20:40:32 +00:00
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco_dataset.sh`.
2018-09-01 16:35:28 +00:00
2019-07-15 15:54:31 +00:00
**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`.
2018-09-01 16:35:28 +00:00
2019-04-16 20:29:00 +00:00
Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with **training speed of 0.25 s/batch on a V100 GPU (almost 50 COCO epochs/day)**.
2018-12-28 18:23:35 +00:00
2019-04-09 09:05:45 +00:00
Here we see training results from `coco_1img.data`, `coco_10img.data` and `coco_100img.data`, 3 example files available in the `data/` folder, which train and test on the first 1, 10 and 100 images of the coco2014 trainval dataset.
2019-02-27 13:07:04 +00:00
`from utils import utils; utils.plot_results()`
2019-04-16 12:01:55 +00:00
![results](https://user-images.githubusercontent.com/26833433/56207787-ec9e7000-604f-11e9-94dd-e1fcc374270f.png)
2018-09-01 11:34:05 +00:00
2018-09-01 11:43:07 +00:00
## Image Augmentation
2018-09-01 11:34:05 +00:00
2018-09-01 16:57:18 +00:00
`datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.
2018-09-01 11:41:34 +00:00
Augmentation | Description
--- | ---
2018-12-28 18:23:35 +00:00
Translation | +/- 10% (vertical and horizontal)
2018-09-01 12:04:42 +00:00
Rotation | +/- 5 degrees
2018-12-28 18:23:35 +00:00
Shear | +/- 2 degrees (vertical and horizontal)
Scale | +/- 10%
2018-09-01 12:10:06 +00:00
Reflection | 50% probability (horizontal-only)
2018-09-01 12:04:42 +00:00
H**S**V Saturation | +/- 50%
HS**V** Intensity | +/- 50%
2018-09-01 11:34:05 +00:00
2019-07-20 15:31:21 +00:00
<img src="https://user-images.githubusercontent.com/26833433/61579359-507b7d80-ab04-11e9-8a2a-bd6f59bbdfb4.jpg">
2018-08-26 08:51:39 +00:00
2019-03-20 11:35:39 +00:00
## Speed
https://cloud.google.com/deep-learning-vm/
**Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory)
2019-03-20 11:35:39 +00:00
**CPU platform:** Intel Skylake
2019-07-20 17:27:27 +00:00
**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.80/hr) CUDA with Nvidia Apex FP16/32
2019-03-20 11:35:39 +00:00
**HDD:** 100 GB SSD
2019-07-20 17:27:27 +00:00
**Dataset:** COCO train 2014 (117,263 images)
GPUs | `batch_size` | batch time | epoch time | epoch cost
--- |---| --- | --- | ---
2019-07-20 17:27:27 +00:00
1 K80 | 64 (32x2) | 2.9s | 175min | $0.58
1 T4 | 64 (32x2) | 0.8s | 49min | $0.29
1 2080ti | 64 (32x2) | - | - | -
1 V100 | 64 (32x2) | 0.38s | 23min | $0.31
2 V100 | 64 (64x1) | 0.38s | 23min | $0.62
2019-03-20 11:35:39 +00:00
2018-08-26 09:05:13 +00:00
# Inference
2019-02-11 13:13:27 +00:00
2019-07-20 15:31:21 +00:00
`detect.py` runs inference on all images **and videos** in the `data/samples` folder:
2018-12-22 12:05:52 +00:00
2019-03-21 11:01:07 +00:00
**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights`
2019-03-21 11:00:24 +00:00
<img src="https://user-images.githubusercontent.com/26833433/50524393-b0adc200-0ad5-11e9-9335-4774a1e52374.jpg" width="600">
2018-12-22 12:05:52 +00:00
2019-03-21 11:01:07 +00:00
**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights`
2019-03-21 11:00:24 +00:00
<img src="https://user-images.githubusercontent.com/26833433/50374155-21427380-05ea-11e9-8d24-f1a4b2bac1ad.jpg" width="600">
2019-03-21 11:01:07 +00:00
**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights`
2019-03-21 11:00:24 +00:00
<img src="https://user-images.githubusercontent.com/26833433/54747926-e051ff00-4bd8-11e9-8b5d-93a41d871ec7.jpg" width="600">
2018-09-04 12:36:51 +00:00
2019-02-11 13:11:24 +00:00
## Webcam
2019-07-20 15:31:21 +00:00
`detect.py` with `webcam=True` shows a live webcam feed.
2019-02-11 13:11:24 +00:00
2018-12-22 11:49:55 +00:00
# Pretrained Weights
2018-12-22 11:58:59 +00:00
2019-03-20 12:08:24 +00:00
- Darknet `*.weights` format: https://pjreddie.com/media/files/yolov3.weights
- PyTorch `*.pt` format: https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI
2018-09-01 16:48:53 +00:00
2019-04-23 15:05:42 +00:00
## Darknet Conversion
```bash
git clone https://github.com/ultralytics/yolov3 && cd yolov3
# convert darknet cfg/weights to pytorch model
python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'
# convert cfg/pytorch model to darknet weights
python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'
```
2019-03-20 11:26:46 +00:00
# mAP
2019-07-20 15:31:21 +00:00
- `test.py --weights weights/yolov3.weights` tests official YOLOv3 weights.
- `test.py --weights weights/last.pt` tests most recent checkpoint.
- `test.py --weights weights/best.pt` tests best checkpoint.
- Compare to darknet published results https://arxiv.org/abs/1804.02767.
<!---
2019-04-03 12:21:41 +00:00
%<i></i> | ultralytics/yolov3 OR-NMS 5:52@416 (`pycocotools`) | darknet
--- | --- | ---
YOLOv3-320 | 51.9 (51.4) | 51.5
YOLOv3-416 | 55.0 (54.9) | 55.3
YOLOv3-608 | 57.5 (57.8) | 57.9
2019-04-03 12:21:41 +00:00
<i></i> | ultralytics/yolov3 MERGE-NMS 7:15@416 (`pycocotools`) | darknet
--- | --- | ---
YOLOv3-320 | 52.3 (51.7) | 51.5
YOLOv3-416 | 55.4 (55.3) | 55.3
YOLOv3-608 | 57.9 (58.1) | 57.9
<i></i> | ultralytics/yolov3 MERGE+earlier_pred4 8:34@416 (`pycocotools`) | darknet
--- | --- | ---
YOLOv3-320 | 52.3 (51.8) | 51.5
YOLOv3-416 | 55.5 (55.4) | 55.3
YOLOv3-608 | 57.9 (58.2) | 57.9
--->
2019-04-03 12:22:32 +00:00
<i></i> | [ultralytics/yolov3](https://github.com/ultralytics/yolov3) | [darknet](https://arxiv.org/abs/1804.02767)
--- | --- | ---
2019-04-03 12:21:41 +00:00
`YOLOv3 320` | 51.8 | 51.5
`YOLOv3 416` | 55.4 | 55.3
`YOLOv3 608` | 58.2 | 57.9
`YOLOv3-spp 320` | 52.4 | -
`YOLOv3-spp 416` | 56.5 | -
`YOLOv3-spp 608` | 60.7 | 60.6
2019-03-20 11:26:46 +00:00
``` bash
2019-07-20 15:31:21 +00:00
# install pycocotools
2019-04-12 12:24:51 +00:00
git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
2019-03-20 12:08:24 +00:00
cd yolov3
2019-07-20 15:31:21 +00:00
python3 test.py --save-json --img-size 608
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)
Class Images Targets P R mAP F1: 100% 313/313 [07:40<00:00, 2.34s/it]
all 5e+03 3.58e+04 0.117 0.788 0.595 0.199
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.367
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.607 <--
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.387
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.208
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.392
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.487
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.297
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.465
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.332
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.621
2019-04-12 12:24:51 +00:00
python3 test.py --save-json --img-size 416
2019-07-20 15:31:21 +00:00
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)
Class Images Targets P R mAP F1: 100% 313/313 [07:01<00:00, 1.41s/it]
all 5e+03 3.58e+04 0.105 0.746 0.554 0.18
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.565 <--
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.350
2019-04-12 12:24:51 +00:00
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
2019-07-20 15:31:21 +00:00
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.361
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.494
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.433
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.459
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.256
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622
2019-03-20 11:26:46 +00:00
```
2018-08-26 08:51:39 +00:00
2019-04-03 10:42:40 +00:00
# Citation
[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
2018-08-26 08:51:39 +00:00
# Contact
2019-04-04 15:34:11 +00:00
Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.