car-detection-bayes/train.py

412 lines
17 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
import time
import torch.distributed as dist
2019-04-17 13:52:51 +00:00
import torch.optim as optim
2019-05-30 17:02:55 +00:00
import torch.optim.lr_scheduler as lr_scheduler
2019-03-21 12:48:40 +00:00
from torch.utils.data import DataLoader
2019-02-12 17:05:58 +00:00
import test # Import test.py to get mAP after each epoch
2018-08-26 08:51:39 +00:00
from models import *
from utils.datasets import *
from utils.utils import *
2019-05-11 12:55:10 +00:00
# Hyperparameters: train.py --evolve --epochs 2 --img-size 320, Metrics: 0.204 0.302 0.175 0.234 (square smart)
2019-06-15 00:10:15 +00:00
hyp = {'giou': .035, # giou loss gain
'xy': 0.20, # xy loss gain
'wh': 0.10, # wh loss gain
'cls': 0.035, # cls loss gain
'conf': 1.61, # conf loss gain
'conf_bpw': 3.53, # conf BCELoss positive_weight
'iou_t': 0.29, # iou target-anchor training threshold
2019-05-23 10:27:46 +00:00
'lr0': 0.001, # initial learning rate
'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
'momentum': 0.90, # SGD momentum
'weight_decay': 0.0005} # optimizer weight decay
2019-04-17 14:15:08 +00:00
2019-05-10 12:15:09 +00:00
2019-05-11 12:55:10 +00:00
# Hyperparameters: Original, Metrics: 0.172 0.304 0.156 0.205 (square)
2019-05-08 11:06:24 +00:00
# hyp = {'xy': 0.5, # xy loss gain
# 'wh': 0.0625, # wh loss gain
# 'cls': 0.0625, # cls loss gain
# 'conf': 4, # conf loss gain
2019-04-21 18:35:11 +00:00
# 'iou_t': 0.1, # iou target-anchor training threshold
# 'lr0': 0.001, # initial learning rate
2019-05-08 11:06:24 +00:00
# 'lrf': -5., # final learning rate = lr0 * (10 ** lrf)
2019-04-21 18:35:11 +00:00
# 'momentum': 0.9, # SGD momentum
2019-05-11 12:55:10 +00:00
# 'weight_decay': 0.0005} # optimizer weight decay
# Hyperparameters: train.py --evolve --epochs 2 --img-size 320, Metrics: 0.225 0.251 0.145 0.218 (rect)
# hyp = {'xy': 0.4499, # xy loss gain
# 'wh': 0.05121, # wh loss gain
# 'cls': 0.04207, # cls loss gain
# 'conf': 2.853, # conf loss gain
# 'iou_t': 0.2487, # iou target-anchor training threshold
# 'lr0': 0.0005301, # initial learning rate
# 'lrf': -5., # final learning rate = lr0 * (10 ** lrf)
# 'momentum': 0.8823, # SGD momentum
# 'weight_decay': 0.0004149} # optimizer weight decay
# Hyperparameters: train.py --evolve --epochs 2 --img-size 320, Metrics: 0.178 0.313 0.167 0.212 (square)
# hyp = {'xy': 0.4664, # xy loss gain
# 'wh': 0.08437, # wh loss gain
# 'cls': 0.05145, # cls loss gain
# 'conf': 4.244, # conf loss gain
# 'iou_t': 0.09121, # iou target-anchor training threshold
# 'lr0': 0.0004938, # initial learning rate
# 'lrf': -5., # final learning rate = lr0 * (10 ** lrf)
# 'momentum': 0.9025, # SGD momentum
# 'weight_decay': 0.0005417} # optimizer weight decay
2019-04-21 18:35:11 +00:00
def train(
2019-02-08 21:43:05 +00:00
cfg,
data_cfg,
2018-12-10 12:19:13 +00:00
img_size=416,
resume=False,
2019-05-31 12:30:27 +00:00
epochs=100, # 500200 batches at bs 4, 117263 images = 68 epochs
2018-12-10 12:19:13 +00:00
batch_size=16,
2019-05-30 17:02:55 +00:00
accumulate=4, # effective bs = 64 = batch_size * accumulate
2019-02-21 15:18:11 +00:00
freeze_backbone=False,
2019-04-02 16:04:04 +00:00
transfer=False # Transfer learning (train only YOLO layers)
):
2019-04-17 15:27:51 +00:00
init_seeds()
2019-02-21 14:57:18 +00:00
weights = 'weights' + os.sep
latest = weights + 'latest.pt'
best = weights + 'best.pt'
device = torch_utils.select_device()
2019-06-12 11:04:58 +00:00
torch.backends.cudnn.benchmark = True # possibly unsuitable for multiscale
img_size_test = img_size # image size for testing
2019-06-13 16:13:30 +00:00
multi_scale = not opt.single_scale
2019-06-13 16:13:30 +00:00
if multi_scale:
2019-06-12 11:04:58 +00:00
img_size_min = round(img_size / 32 / 1.5)
img_size_max = round(img_size / 32 * 1.5)
img_size = img_size_max * 32 # initiate with maximum multi_scale size
2018-08-26 08:51:39 +00:00
# Configure run
2019-04-27 15:57:07 +00:00
data_dict = parse_data_cfg(data_cfg)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
2018-08-26 08:51:39 +00:00
# Initialize model
2019-06-12 11:04:58 +00:00
model = Darknet(cfg).to(device)
2018-08-26 08:51:39 +00:00
# Optimizer
2019-04-17 13:52:51 +00:00
optimizer = optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
2018-08-26 08:51:39 +00:00
2019-02-21 14:57:18 +00:00
cutoff = -1 # backbone reaches to cutoff layer
2019-02-22 15:15:20 +00:00
start_epoch = 0
best_loss = float('inf')
2019-04-11 10:41:07 +00:00
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
2019-04-03 09:07:31 +00:00
if resume: # Load previously saved model
2019-04-02 16:04:04 +00:00
if transfer: # Transfer learning
2019-04-13 18:32:29 +00:00
chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
2019-04-03 09:31:31 +00:00
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
2019-04-03 09:07:31 +00:00
strict=False)
for p in model.parameters():
2019-04-02 16:04:04 +00:00
p.requires_grad = True if p.shape[0] == nf else False
else: # resume from latest.pt
chkpt = torch.load(latest, map_location=device) # load checkpoint
model.load_state_dict(chkpt['model'])
start_epoch = chkpt['epoch'] + 1
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_loss = chkpt['best_loss']
del chkpt
2018-10-30 14:18:52 +00:00
else: # Initialize model with backbone (optional)
2019-04-02 16:50:55 +00:00
if '-tiny.cfg' in cfg:
2019-03-19 08:38:32 +00:00
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
2019-04-02 16:50:55 +00:00
else:
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
2018-10-30 14:18:52 +00:00
2019-06-16 21:17:40 +00:00
# Remove old results
for f in glob.glob('*_batch*.jpg') + glob.glob('results.txt'):
os.remove(f)
2019-04-24 10:58:14 +00:00
# Scheduler https://github.com/ultralytics/yolov3/issues/238
2019-04-17 13:52:51 +00:00
# lf = lambda x: 1 - x / epochs # linear ramp to zero
2019-04-24 11:30:24 +00:00
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
2019-05-30 17:02:55 +00:00
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in (0.8, 0.9)], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
2019-04-18 19:56:50 +00:00
2019-04-24 10:58:14 +00:00
# # Plot lr schedule
2019-04-18 19:44:57 +00:00
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
2019-04-24 10:58:14 +00:00
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.xlabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
2019-04-17 14:15:08 +00:00
# Dataset
2019-06-14 23:35:55 +00:00
rectangular_training = False
2019-05-21 15:37:34 +00:00
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
2019-06-14 23:35:55 +00:00
rect=rectangular_training)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank)
model = torch.nn.parallel.DistributedDataParallel(model)
2019-04-22 21:27:31 +00:00
# sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# Dataloader
dataloader = DataLoader(dataset,
batch_size=batch_size,
2019-04-17 16:40:12 +00:00
num_workers=opt.num_workers,
2019-06-14 23:35:55 +00:00
shuffle=not rectangular_training, # Shuffle=True unless rectangular training is used
2019-04-15 17:25:36 +00:00
pin_memory=True,
2019-04-22 21:27:31 +00:00
collate_fn=dataset.collate_fn)
2018-08-26 08:51:39 +00:00
2019-04-13 14:02:45 +00:00
# Mixed precision training https://github.com/NVIDIA/apex
2019-04-18 14:45:38 +00:00
# install help: https://github.com/NVIDIA/apex/issues/259
2019-04-13 14:02:45 +00:00
mixed_precision = False
if mixed_precision:
from apex import amp
2019-04-14 14:00:04 +00:00
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
2019-05-23 10:32:11 +00:00
2019-03-07 16:16:38 +00:00
# Start training
2019-04-17 13:52:51 +00:00
model.hyp = hyp # attach hyperparameters to model
2019-04-27 15:51:59 +00:00
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
2019-03-05 16:10:34 +00:00
model_info(model)
2019-04-17 13:52:51 +00:00
nb = len(dataloader)
2019-05-10 12:15:09 +00:00
maps = np.zeros(nc) # mAP per class
2019-04-17 14:15:08 +00:00
results = (0, 0, 0, 0, 0) # P, R, mAP, F1, test_loss
2019-04-17 13:52:51 +00:00
n_burnin = min(round(nb / 5 + 1), 1000) # burn-in batches
2019-05-08 15:29:23 +00:00
t, t0 = time.time(), time.time()
for epoch in range(start_epoch, epochs):
model.train()
2019-05-21 10:58:18 +00:00
print(('\n%8s%12s' + '%10s' * 7) % ('Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'targets', 'time'))
2018-09-20 16:03:19 +00:00
# Update scheduler
scheduler.step()
2018-08-26 08:51:39 +00:00
2019-05-23 10:32:11 +00:00
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
2019-03-19 08:38:32 +00:00
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
2019-02-21 14:57:18 +00:00
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
2018-11-27 17:14:48 +00:00
2019-06-12 09:25:56 +00:00
# # Update image weights (optional)
# w = model.class_weights.cpu().numpy() * (1 - maps) # class weights
# image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
# dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # random weighted index
2019-05-10 12:15:09 +00:00
2019-04-17 13:52:51 +00:00
mloss = torch.zeros(5).to(device) # mean losses
2019-02-26 01:53:11 +00:00
for i, (imgs, targets, _, _) in enumerate(dataloader):
imgs = imgs.to(device)
targets = targets.to(device)
2018-09-19 02:21:46 +00:00
2019-06-12 11:04:58 +00:00
# Multi-Scale training
2019-06-13 16:13:30 +00:00
if multi_scale:
2019-06-12 11:04:58 +00:00
if (i + 1 + nb * epoch) % 10 == 0: #  adjust (67% - 150%) every 10 batches
img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
2019-06-12 12:15:28 +00:00
print('img_size = %g' % img_size)
2019-06-12 11:04:58 +00:00
scale_factor = img_size / max(imgs.shape[-2:])
imgs = F.interpolate(imgs, scale_factor=scale_factor, mode='bilinear', align_corners=False)
2019-03-21 20:41:12 +00:00
# Plot images with bounding boxes
2019-04-09 10:24:01 +00:00
if epoch == 0 and i == 0:
2019-06-12 11:19:17 +00:00
plot_images(imgs=imgs, targets=targets, fname='train_batch%g.jpg' % i)
2019-03-21 20:41:12 +00:00
2018-09-20 16:03:19 +00:00
# SGD burn-in
if epoch == 0 and i <= n_burnin:
2019-04-17 13:52:51 +00:00
lr = hyp['lr0'] * (i / n_burnin) ** 4
2019-03-19 08:38:32 +00:00
for x in optimizer.param_groups:
x['lr'] = lr
2018-09-20 16:03:19 +00:00
# Run model
pred = model(imgs)
2019-03-07 16:16:38 +00:00
# Compute loss
2019-06-15 15:06:58 +00:00
loss, loss_items = compute_loss(pred, targets, model, giou_loss=opt.giou)
2019-04-17 16:33:16 +00:00
if torch.isnan(loss):
print('WARNING: nan loss detected, ending training')
return results
2019-03-07 16:16:38 +00:00
# Compute gradient
2019-04-13 14:02:45 +00:00
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
2018-10-09 17:22:33 +00:00
2019-03-07 16:16:38 +00:00
# Accumulate gradient for x batches before optimizing
2019-04-17 13:52:51 +00:00
if (i + 1) % accumulate == 0 or (i + 1) == nb:
2018-12-16 14:16:19 +00:00
optimizer.step()
optimizer.zero_grad()
2018-09-19 02:21:46 +00:00
2019-04-15 11:55:52 +00:00
# Print batch results
2019-05-23 10:32:11 +00:00
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
2019-02-19 18:55:33 +00:00
s = ('%8s%12s' + '%10.3g' * 7) % (
2019-04-15 11:55:52 +00:00
'%g/%g' % (epoch, epochs - 1),
2019-05-23 10:32:11 +00:00
'%g/%g' % (i, nb - 1), *mloss, len(targets), time.time() - t)
t = time.time()
2018-09-19 02:21:46 +00:00
print(s)
2018-08-26 08:51:39 +00:00
2019-04-17 15:42:17 +00:00
# Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
2019-05-10 12:15:09 +00:00
if not (opt.notest or (opt.nosave and epoch < 10)) or epoch == epochs - 1:
2019-04-17 15:35:00 +00:00
with torch.no_grad():
2019-06-12 11:04:58 +00:00
results, maps = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size_test, model=model,
2019-06-12 09:55:20 +00:00
conf_thres=0.1)
2019-04-05 13:34:42 +00:00
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 5 % results + '\n') # P, R, mAP, F1, test_loss
2018-08-26 08:51:39 +00:00
# Update best loss
2019-04-05 13:34:42 +00:00
test_loss = results[4]
if test_loss < best_loss:
2019-04-05 14:26:42 +00:00
best_loss = test_loss
2019-03-19 08:38:32 +00:00
# Save training results
2019-04-26 11:56:44 +00:00
save = (not opt.nosave) or (epoch == epochs - 1)
if save:
2019-04-05 13:34:42 +00:00
# Create checkpoint
2019-04-02 16:04:04 +00:00
chkpt = {'epoch': epoch,
'best_loss': best_loss,
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
2019-04-05 13:34:42 +00:00
# Save latest checkpoint
2019-04-02 16:04:04 +00:00
torch.save(chkpt, latest)
# Save best checkpoint
2019-04-05 13:34:42 +00:00
if best_loss == test_loss:
2019-04-02 16:04:04 +00:00
torch.save(chkpt, best)
2019-04-02 16:04:04 +00:00
# Save backup every 10 epochs (optional)
2019-04-02 12:07:14 +00:00
if epoch > 0 and epoch % 10 == 0:
2019-04-02 16:04:04 +00:00
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
2019-04-02 14:33:52 +00:00
2019-04-05 13:34:42 +00:00
# Delete checkpoint
2019-04-02 16:04:04 +00:00
del chkpt
2018-08-26 08:51:39 +00:00
2019-04-26 12:49:40 +00:00
dt = (time.time() - t0) / 3600
2019-05-30 18:21:25 +00:00
print('%g epochs completed in %.3f hours.' % (epoch - start_epoch + 1, dt))
2019-04-17 14:15:08 +00:00
return results
2018-08-26 08:51:39 +00:00
2019-04-18 13:17:31 +00:00
def print_mutation(hyp, results):
# Write mutation results
2019-04-18 13:18:09 +00:00
a = '%11s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
2019-04-18 13:24:58 +00:00
b = '%11.4g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%11.3g' * len(results) % results # results (P, R, mAP, F1, test_loss)
2019-04-18 13:18:09 +00:00
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
2019-04-18 13:17:31 +00:00
with open('evolve.txt', 'a') as f:
2019-04-18 13:56:31 +00:00
f.write(c + b + '\n')
2019-04-18 13:17:31 +00:00
2018-08-26 08:51:39 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2019-05-30 17:08:43 +00:00
parser.add_argument('--epochs', type=int, default=68, help='number of epochs')
2019-06-12 11:25:39 +00:00
parser.add_argument('--batch-size', type=int, default=8, help='batch size')
parser.add_argument('--accumulate', type=int, default=8, help='number of batches to accumulate before optimizing')
2019-04-03 12:25:31 +00:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
2019-05-30 17:02:55 +00:00
parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path')
2019-06-13 16:13:30 +00:00
parser.add_argument('--single-scale', action='store_true', help='train at fixed size (no multi-scale)')
2019-05-23 10:27:46 +00:00
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--resume', action='store_true', help='resume training flag')
2019-04-02 16:04:04 +00:00
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
2019-05-10 13:24:03 +00:00
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:9999', type=str, help='distributed training init method')
parser.add_argument('--rank', default=0, type=int, help='distributed training node rank')
parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training')
parser.add_argument('--backend', default='nccl', type=str, help='distributed backend')
2019-04-05 13:43:41 +00:00
parser.add_argument('--nosave', action='store_true', help='do not save training results')
2019-04-17 15:27:51 +00:00
parser.add_argument('--notest', action='store_true', help='only test final epoch')
2019-06-15 15:06:58 +00:00
parser.add_argument('--giou', action='store_true', help='use GIoU loss instead of xy, wh loss')
2019-04-17 15:27:51 +00:00
parser.add_argument('--evolve', action='store_true', help='run hyperparameter evolution')
2019-04-17 13:52:51 +00:00
parser.add_argument('--var', default=0, type=int, help='debug variable')
opt = parser.parse_args()
2019-05-03 16:14:16 +00:00
print(opt)
2019-04-17 15:51:39 +00:00
if opt.evolve:
opt.notest = True # save time by only testing final epoch
opt.nosave = True # do not save checkpoints
2019-04-17 15:27:51 +00:00
# Train
2019-04-17 14:15:08 +00:00
results = train(
opt.cfg,
2019-02-08 21:43:05 +00:00
opt.data_cfg,
img_size=opt.img_size,
2019-04-02 16:05:25 +00:00
resume=opt.resume or opt.transfer,
transfer=opt.transfer,
epochs=opt.epochs,
batch_size=opt.batch_size,
2019-03-19 08:38:32 +00:00
accumulate=opt.accumulate,
)
2019-04-17 15:27:51 +00:00
# Evolve hyperparameters (optional)
if opt.evolve:
best_fitness = results[2] # use mAP for fitness
2019-04-17 16:22:40 +00:00
# Write mutation results
2019-04-18 13:17:31 +00:00
print_mutation(hyp, results)
2019-04-17 16:22:40 +00:00
2019-05-30 23:33:17 +00:00
gen = 1000 # generations to evolve
2019-04-17 15:27:51 +00:00
for _ in range(gen):
# Mutate hyperparameters
old_hyp = hyp.copy()
2019-04-17 16:48:08 +00:00
init_seeds(seed=int(time.time()))
2019-06-12 13:14:13 +00:00
s = [.3, .3, .3, .3, .3, .3, .3, .03, .3] # xy, wh, cls, conf, iou_t, lr0, lrf, momentum, weight_decay
2019-04-18 10:21:39 +00:00
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 1.1 # plt.hist(x.ravel(), 100)
2019-04-17 15:27:51 +00:00
hyp[k] = hyp[k] * float(x) # vary by about 30% 1sigma
2019-04-24 12:09:15 +00:00
# Clip to limits
2019-05-11 12:55:10 +00:00
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay']
limits = [(1e-4, 1e-2), (0, 0.90), (0.70, 0.99), (0, 0.01)]
2019-04-24 12:09:15 +00:00
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
2019-04-17 17:04:01 +00:00
2019-04-17 15:27:51 +00:00
# Determine mutation fitness
results = train(
opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
resume=opt.resume or opt.transfer,
transfer=opt.transfer,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate,
)
mutation_fitness = results[2]
# Write mutation results
2019-04-18 13:17:31 +00:00
print_mutation(hyp, results)
2019-04-17 15:27:51 +00:00
# Update hyperparameters if fitness improved
if mutation_fitness > best_fitness:
# Fitness improved!
print('Fitness improved!')
best_fitness = mutation_fitness
else:
hyp = old_hyp.copy() # reset hyp to
2019-04-18 10:21:39 +00:00
2019-05-08 11:31:49 +00:00
# # Plot results
# import numpy as np
# import matplotlib.pyplot as plt
# a = np.loadtxt('evolve_1000val.txt')
# x = a[:, 2] * a[:, 3] # metric = mAP * F1
# weights = (x - x.min()) ** 2
# fig = plt.figure(figsize=(14, 7))
# for i in range(len(hyp)):
# y = a[:, i + 5]
# mu = (y * weights).sum() / weights.sum()
# plt.subplot(2, 5, i+1)
# plt.plot(x.max(), mu, 'o')
# plt.plot(x, y, '.')
# print(list(hyp.keys())[i],'%.4g' % mu)