2018-08-26 08:51:39 +00:00
|
|
|
import glob
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import random
|
2018-08-26 09:52:27 +00:00
|
|
|
from sys import platform
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
# from torch.utils.data import Dataset
|
|
|
|
from utils.utils import xyxy2xywh
|
|
|
|
|
|
|
|
|
|
|
|
class ImageFolder(): # for eval-only
|
|
|
|
def __init__(self, path, batch_size=1, img_size=416):
|
|
|
|
if os.path.isdir(path):
|
|
|
|
self.files = sorted(glob.glob('%s/*.*' % path))
|
|
|
|
elif os.path.isfile(path):
|
|
|
|
self.files = [path]
|
|
|
|
|
|
|
|
self.nF = len(self.files) # number of image files
|
|
|
|
self.nB = math.ceil(self.nF / batch_size) # number of batches
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.height = img_size
|
|
|
|
assert self.nF > 0, 'No images found in path %s' % path
|
|
|
|
|
|
|
|
# RGB normalization values
|
|
|
|
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((3, 1, 1))
|
|
|
|
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((3, 1, 1))
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self.count = -1
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
self.count += 1
|
|
|
|
if self.count == self.nB:
|
|
|
|
raise StopIteration
|
|
|
|
img_path = self.files[self.count]
|
|
|
|
|
|
|
|
# Read image
|
|
|
|
img = cv2.imread(img_path) # BGR
|
|
|
|
|
|
|
|
# Padded resize
|
|
|
|
img, _, _, _ = resize_square(img, height=self.height, color=(127.5, 127.5, 127.5))
|
|
|
|
|
|
|
|
# Normalize RGB
|
|
|
|
img = img[:, :, ::-1].transpose(2, 0, 1)
|
|
|
|
img = np.ascontiguousarray(img, dtype=np.float32)
|
|
|
|
# img -= self.rgb_mean
|
|
|
|
# img /= self.rgb_std
|
|
|
|
img /= 255.0
|
|
|
|
|
|
|
|
return [img_path], img
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.nB # number of batches
|
|
|
|
|
|
|
|
|
|
|
|
class ListDataset(): # for training
|
|
|
|
def __init__(self, path, batch_size=1, img_size=608):
|
|
|
|
self.path = path
|
2018-08-26 13:40:07 +00:00
|
|
|
# self.img_files = sorted(glob.glob('%s/*.*' % path))
|
2018-08-26 08:51:39 +00:00
|
|
|
with open(path, 'r') as file:
|
|
|
|
self.img_files = file.readlines()
|
2018-08-26 09:52:27 +00:00
|
|
|
|
|
|
|
if platform == 'darwin': # macos
|
2018-08-26 13:40:07 +00:00
|
|
|
self.img_files = [path.replace('\n', '').replace('/images', '/Users/glennjocher/Downloads/DATA/coco/images')
|
|
|
|
for path in self.img_files]
|
2018-08-26 09:52:27 +00:00
|
|
|
else:
|
2018-08-26 13:40:07 +00:00
|
|
|
self.img_files = [path.replace('\n', '').replace('/images', '../coco/images') for path in self.img_files]
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
self.label_files = [path.replace('images', 'labels').replace('.png', '.txt').replace('.jpg', '.txt') for path in
|
|
|
|
self.img_files]
|
|
|
|
|
|
|
|
self.nF = len(self.img_files) # number of image files
|
|
|
|
self.nB = math.ceil(self.nF / batch_size) # number of batches
|
|
|
|
self.batch_size = batch_size
|
|
|
|
|
2018-08-26 13:40:07 +00:00
|
|
|
# assert self.nB > 0, 'No images found in path %s' % path
|
2018-08-26 08:51:39 +00:00
|
|
|
self.height = img_size
|
|
|
|
|
|
|
|
# RGB normalization values
|
|
|
|
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((1, 3, 1, 1))
|
|
|
|
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((1, 3, 1, 1))
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self.count = -1
|
2018-08-26 13:40:07 +00:00
|
|
|
self.shuffled_vector = np.random.permutation(self.nF) # shuffled vector
|
|
|
|
# self.shuffled_vector = np.arange(self.nF) # not shuffled
|
2018-08-26 08:51:39 +00:00
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
self.count += 1
|
|
|
|
if self.count == self.nB:
|
|
|
|
raise StopIteration
|
|
|
|
|
|
|
|
ia = self.count * self.batch_size
|
|
|
|
ib = min((self.count + 1) * self.batch_size, self.nF)
|
|
|
|
|
|
|
|
height = self.height
|
|
|
|
|
|
|
|
img_all = []
|
|
|
|
labels_all = []
|
|
|
|
for index, files_index in enumerate(range(ia, ib)):
|
|
|
|
img_path = self.img_files[self.shuffled_vector[files_index]]
|
|
|
|
label_path = self.label_files[self.shuffled_vector[files_index]]
|
|
|
|
|
|
|
|
img = cv2.imread(img_path) # BGR
|
|
|
|
if img is None:
|
|
|
|
continue
|
|
|
|
|
2018-08-26 13:40:07 +00:00
|
|
|
augment_hsv = False
|
2018-08-26 08:51:39 +00:00
|
|
|
if augment_hsv:
|
|
|
|
# SV augmentation by 50%
|
|
|
|
fraction = 0.50
|
|
|
|
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
|
|
|
S = img_hsv[:, :, 1].astype(np.float32)
|
|
|
|
V = img_hsv[:, :, 2].astype(np.float32)
|
|
|
|
|
|
|
|
a = (random.random() * 2 - 1) * fraction + 1
|
|
|
|
S *= a
|
|
|
|
if a > 1:
|
|
|
|
np.clip(S, a_min=0, a_max=255, out=S)
|
|
|
|
|
|
|
|
a = (random.random() * 2 - 1) * fraction + 1
|
|
|
|
V *= a
|
|
|
|
if a > 1:
|
|
|
|
np.clip(V, a_min=0, a_max=255, out=V)
|
|
|
|
|
|
|
|
img_hsv[:, :, 1] = S.astype(np.uint8)
|
|
|
|
img_hsv[:, :, 2] = V.astype(np.uint8)
|
|
|
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
|
|
|
|
|
|
|
|
h, w, _ = img.shape
|
|
|
|
img, ratio, padw, padh = resize_square(img, height=height, color=(127.5, 127.5, 127.5))
|
|
|
|
|
|
|
|
# Load labels
|
|
|
|
if os.path.isfile(label_path):
|
|
|
|
labels0 = np.loadtxt(label_path, dtype=np.float32).reshape(-1, 5)
|
|
|
|
|
|
|
|
# Normalized xywh to pixel xyxy format
|
|
|
|
labels = labels0.copy()
|
|
|
|
labels[:, 1] = ratio * w * (labels0[:, 1] - labels0[:, 3] / 2) + padw
|
|
|
|
labels[:, 2] = ratio * h * (labels0[:, 2] - labels0[:, 4] / 2) + padh
|
|
|
|
labels[:, 3] = ratio * w * (labels0[:, 1] + labels0[:, 3] / 2) + padw
|
|
|
|
labels[:, 4] = ratio * h * (labels0[:, 2] + labels0[:, 4] / 2) + padh
|
|
|
|
else:
|
|
|
|
labels = np.array([])
|
|
|
|
|
|
|
|
# Augment image and labels
|
2018-08-26 13:40:07 +00:00
|
|
|
# img, labels, M = random_affine(img, targets=labels, degrees=(-10, 10), translate=(0.2, 0.2), scale=(0.8, 1.2)) # RGB
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
plotFlag = False
|
|
|
|
if plotFlag:
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.subplot(4, 4, index + 1).imshow(img[:, :, ::-1])
|
|
|
|
plt.plot(labels[:, [1, 3, 3, 1, 1]].T, labels[:, [2, 2, 4, 4, 2]].T, '.-')
|
|
|
|
|
|
|
|
nL = len(labels)
|
|
|
|
if nL > 0:
|
|
|
|
# convert xyxy to xywh
|
|
|
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5].copy()) / height
|
|
|
|
|
|
|
|
# random left-right flip
|
2018-08-26 13:40:07 +00:00
|
|
|
lr_flip = False
|
2018-08-26 08:51:39 +00:00
|
|
|
if lr_flip & (random.random() > 0.5):
|
|
|
|
img = np.fliplr(img)
|
|
|
|
if nL > 0:
|
|
|
|
labels[:, 1] = 1 - labels[:, 1]
|
|
|
|
|
|
|
|
# random up-down flip
|
|
|
|
ud_flip = False
|
|
|
|
if ud_flip & (random.random() > 0.5):
|
|
|
|
img = np.flipud(img)
|
|
|
|
if nL > 0:
|
|
|
|
labels[:, 2] = 1 - labels[:, 2]
|
|
|
|
|
|
|
|
img_all.append(img)
|
|
|
|
labels_all.append(torch.from_numpy(labels))
|
|
|
|
|
|
|
|
# Normalize
|
|
|
|
img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch
|
|
|
|
img_all = np.ascontiguousarray(img_all, dtype=np.float32)
|
|
|
|
# img_all -= self.rgb_mean
|
|
|
|
# img_all /= self.rgb_std
|
|
|
|
img_all /= 255.0
|
|
|
|
|
|
|
|
return torch.from_numpy(img_all), labels_all
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.nB # number of batches
|
|
|
|
|
|
|
|
|
|
|
|
def resize_square(img, height=416, color=(0, 0, 0)): # resize a rectangular image to a padded square
|
|
|
|
shape = img.shape[:2] # shape = [height, width]
|
|
|
|
ratio = float(height) / max(shape)
|
|
|
|
new_shape = [round(shape[0] * ratio), round(shape[1] * ratio)]
|
|
|
|
dw = height - new_shape[1] # width padding
|
|
|
|
dh = height - new_shape[0] # height padding
|
|
|
|
top, bottom = dh // 2, dh - (dh // 2)
|
|
|
|
left, right = dw // 2, dw - (dw // 2)
|
|
|
|
img = cv2.resize(img, (new_shape[1], new_shape[0]), interpolation=cv2.INTER_AREA)
|
|
|
|
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color), ratio, dw // 2, dh // 2
|
|
|
|
|
|
|
|
|
|
|
|
def random_affine(img, targets=None, degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-3, 3),
|
|
|
|
borderValue=(0, 0, 0)):
|
|
|
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
|
|
|
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
|
|
|
|
|
|
|
|
border = 0 # width of added border (optional)
|
|
|
|
height = max(img.shape[0], img.shape[1]) + border * 2
|
|
|
|
|
|
|
|
# Rotation and Scale
|
|
|
|
R = np.eye(3)
|
|
|
|
a = random.random() * (degrees[1] - degrees[0]) + degrees[0]
|
|
|
|
# a += random.choice([-180, -90, 0, 90]) # random 90deg rotations added to small rotations
|
|
|
|
|
|
|
|
s = random.random() * (scale[1] - scale[0]) + scale[0]
|
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
|
|
|
|
|
|
|
|
# Translation
|
|
|
|
T = np.eye(3)
|
|
|
|
T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels)
|
|
|
|
T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels)
|
|
|
|
|
|
|
|
# Shear
|
|
|
|
S = np.eye(3)
|
|
|
|
S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg)
|
|
|
|
S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg)
|
|
|
|
|
|
|
|
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
|
|
|
|
imw = cv2.warpPerspective(img, M, dsize=(height, height), flags=cv2.INTER_LINEAR,
|
|
|
|
borderValue=borderValue) # BGR order (YUV-equalized BGR means)
|
|
|
|
|
|
|
|
# Return warped points also
|
|
|
|
if targets is not None:
|
|
|
|
if len(targets) > 0:
|
|
|
|
n = targets.shape[0]
|
|
|
|
points = targets[:, 1:5].copy()
|
|
|
|
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
|
|
|
|
|
|
|
|
# warp points
|
|
|
|
xy = np.ones((n * 4, 3))
|
|
|
|
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
|
|
|
xy = (xy @ M.T)[:, :2].reshape(n, 8)
|
|
|
|
|
|
|
|
# create new boxes
|
|
|
|
x = xy[:, [0, 2, 4, 6]]
|
|
|
|
y = xy[:, [1, 3, 5, 7]]
|
|
|
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
|
|
|
|
|
|
|
# apply angle-based reduction
|
|
|
|
radians = a * math.pi / 180
|
|
|
|
reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
|
|
|
x = (xy[:, 2] + xy[:, 0]) / 2
|
|
|
|
y = (xy[:, 3] + xy[:, 1]) / 2
|
|
|
|
w = (xy[:, 2] - xy[:, 0]) * reduction
|
|
|
|
h = (xy[:, 3] - xy[:, 1]) * reduction
|
|
|
|
xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
|
|
|
|
|
|
|
# reject warped points outside of image
|
|
|
|
np.clip(xy, 0, height, out=xy)
|
|
|
|
w = xy[:, 2] - xy[:, 0]
|
|
|
|
h = xy[:, 3] - xy[:, 1]
|
|
|
|
area = w * h
|
|
|
|
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
|
|
|
|
i = (w > 4) & (h > 4) & (area / area0 > 0.1) & (ar < 10)
|
|
|
|
|
|
|
|
targets = targets[i]
|
|
|
|
targets[:, 1:5] = xy[i]
|
|
|
|
|
|
|
|
return imw, targets, M
|
|
|
|
else:
|
|
|
|
return imw
|
|
|
|
|
|
|
|
|
|
|
|
def convert_tif2bmp(p='/Users/glennjocher/Downloads/DATA/xview/val_images_bmp'):
|
|
|
|
import glob
|
|
|
|
import cv2
|
|
|
|
files = sorted(glob.glob('%s/*.tif' % p))
|
|
|
|
for i, f in enumerate(files):
|
|
|
|
print('%g/%g' % (i + 1, len(files)))
|
|
|
|
|
|
|
|
img = cv2.imread(f)
|
|
|
|
|
|
|
|
cv2.imwrite(f.replace('.tif', '.bmp'), img)
|
|
|
|
os.system('rm -rf ' + f)
|