car-detection-bayes/train.py

233 lines
8.9 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
import time
import torch.distributed as dist
2019-03-21 12:48:40 +00:00
from torch.utils.data import DataLoader
2019-02-12 17:05:58 +00:00
import test # Import test.py to get mAP after each epoch
2018-08-26 08:51:39 +00:00
from models import *
from utils.datasets import *
from utils.utils import *
def train(
2019-02-08 21:43:05 +00:00
cfg,
data_cfg,
2018-12-10 12:19:13 +00:00
img_size=416,
resume=False,
2019-03-19 13:43:10 +00:00
epochs=270,
2018-12-10 12:19:13 +00:00
batch_size=16,
2019-03-19 08:38:32 +00:00
accumulate=1,
2018-12-10 12:19:13 +00:00
multi_scale=False,
2019-02-21 15:18:11 +00:00
freeze_backbone=False,
num_workers=4
):
2019-02-21 14:57:18 +00:00
weights = 'weights' + os.sep
latest = weights + 'latest.pt'
best = weights + 'best.pt'
device = torch_utils.select_device()
2019-03-19 13:35:12 +00:00
if multi_scale:
img_size = 608 # initiate with maximum multi_scale size
2019-03-31 18:19:15 +00:00
num_workers = 0 # bug https://github.com/ultralytics/yolov3/issues/174
2018-12-28 19:09:06 +00:00
else:
2019-02-10 21:01:53 +00:00
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
2018-08-26 08:51:39 +00:00
# Configure run
2019-02-11 21:44:25 +00:00
train_path = parse_data_cfg(data_cfg)['train']
2018-08-26 08:51:39 +00:00
# Initialize model
model = Darknet(cfg, img_size).to(device)
2018-08-26 08:51:39 +00:00
# Optimizer
lr0 = 0.001 # initial learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005)
2018-08-26 08:51:39 +00:00
2019-02-21 14:57:18 +00:00
cutoff = -1 # backbone reaches to cutoff layer
2019-02-22 15:15:20 +00:00
start_epoch = 0
best_loss = float('inf')
if resume: # Load previously saved PyTorch model
2019-03-21 15:26:31 +00:00
checkpoint = torch.load(latest, map_location=device) # load checkpoint
2018-08-26 08:51:39 +00:00
model.load_state_dict(checkpoint['model'])
2018-09-24 19:25:17 +00:00
start_epoch = checkpoint['epoch'] + 1
2018-09-24 01:06:04 +00:00
if checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
best_loss = checkpoint['best_loss']
2019-04-02 12:29:35 +00:00
del checkpoint
2018-10-30 14:18:52 +00:00
else: # Initialize model with backbone (optional)
2019-02-21 14:57:18 +00:00
if cfg.endswith('yolov3.cfg'):
2019-03-19 08:38:32 +00:00
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
2019-02-21 14:57:18 +00:00
elif cfg.endswith('yolov3-tiny.cfg'):
2019-03-19 08:38:32 +00:00
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
2018-10-30 14:18:52 +00:00
2019-03-21 10:11:08 +00:00
# Transfer learning (train only YOLO layers)
# for i, (name, p) in enumerate(model.named_parameters()):
# p.requires_grad = True if (p.shape[0] == 255) else False
# Set scheduler (reduce lr at epoch 250)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[250], gamma=0.1, last_epoch=start_epoch - 1)
# Dataset
dataset = LoadImagesAndLabels(train_path, img_size=img_size, augment=True)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank)
model = torch.nn.parallel.DistributedDataParallel(model)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
sampler = None
# Dataloader
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=num_workers,
2019-03-25 14:06:22 +00:00
shuffle=False,
pin_memory=False,
collate_fn=dataset.collate_fn,
sampler=sampler)
2018-08-26 08:51:39 +00:00
2019-03-07 16:16:38 +00:00
# Start training
nB = len(dataloader)
t = time.time()
2019-03-05 16:10:34 +00:00
model_info(model)
n_burnin = min(round(nB / 5 + 1), 1000) # burn-in batches
for epoch in range(start_epoch, epochs):
model.train()
print(('\n%8s%12s' + '%10s' * 7) % ('Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'nTargets', 'time'))
2018-09-20 16:03:19 +00:00
# Update scheduler
scheduler.step()
2018-08-26 08:51:39 +00:00
2019-03-19 08:38:32 +00:00
# Freeze backbone at epoch 0, unfreeze at epoch 1
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
2019-02-21 14:57:18 +00:00
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
2018-11-27 17:14:48 +00:00
mloss = defaultdict(float) # mean loss
2019-02-26 01:53:11 +00:00
for i, (imgs, targets, _, _) in enumerate(dataloader):
imgs = imgs.to(device)
targets = targets.to(device)
2019-03-21 20:41:12 +00:00
nT = len(targets)
if nT == 0: # if no targets continue
2018-09-19 02:21:46 +00:00
continue
2019-03-21 20:41:12 +00:00
# Plot images with bounding boxes
plot_images = False
if plot_images:
fig = plt.figure(figsize=(10, 10))
2019-04-02 11:43:18 +00:00
for ip in range(len(imgs)):
boxes = xywh2xyxy(targets[targets[:, 0] == ip, 2:6]).numpy().T * img_size
2019-03-22 13:08:03 +00:00
plt.subplot(4, 4, ip + 1).imshow(imgs[ip].numpy().transpose(1, 2, 0))
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
2019-03-21 20:41:12 +00:00
plt.axis('off')
fig.tight_layout()
fig.savefig('batch_%g.jpg' % i, dpi=fig.dpi)
2019-03-21 20:41:12 +00:00
2018-09-20 16:03:19 +00:00
# SGD burn-in
if epoch == 0 and i <= n_burnin:
2019-03-05 16:10:34 +00:00
lr = lr0 * (i / n_burnin) ** 4
2019-03-19 08:38:32 +00:00
for x in optimizer.param_groups:
x['lr'] = lr
2018-09-20 16:03:19 +00:00
# Run model
pred = model(imgs)
# Build targets
target_list = build_targets(model, targets)
2019-03-07 16:16:38 +00:00
# Compute loss
loss, loss_dict = compute_loss(pred, target_list)
2019-03-07 16:16:38 +00:00
# Compute gradient
2018-09-19 02:21:46 +00:00
loss.backward()
2018-10-09 17:22:33 +00:00
2019-03-07 16:16:38 +00:00
# Accumulate gradient for x batches before optimizing
if (i + 1) % accumulate == 0 or (i + 1) == nB:
2018-12-16 14:16:19 +00:00
optimizer.step()
optimizer.zero_grad()
2018-09-19 02:21:46 +00:00
2018-11-22 13:14:19 +00:00
# Running epoch-means of tracked metrics
for key, val in loss_dict.items():
mloss[key] = (mloss[key] * i + val) / (i + 1)
2018-09-19 02:21:46 +00:00
2019-02-19 18:55:33 +00:00
s = ('%8s%12s' + '%10.3g' * 7) % (
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nB - 1),
mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'],
mloss['total'], nT, time.time() - t)
t = time.time()
2018-09-19 02:21:46 +00:00
print(s)
2018-08-26 08:51:39 +00:00
2019-03-19 08:38:32 +00:00
# Multi-Scale training (320 - 608 pixels) every 10 batches
if multi_scale and (i + 1) % 10 == 0:
2019-03-21 12:48:40 +00:00
dataset.img_size = random.choice(range(10, 20)) * 32
print('multi_scale img_size = %g' % dataset.img_size)
2019-03-19 08:38:32 +00:00
2018-08-26 08:51:39 +00:00
# Update best loss
if mloss['total'] < best_loss:
best_loss = mloss['total']
2019-03-19 08:38:32 +00:00
# Save training results
save = True
if save:
# Save latest checkpoint
checkpoint = {'epoch': epoch,
'best_loss': best_loss,
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, latest)
2019-04-02 12:29:35 +00:00
del checkpoint
# Save best checkpoint
if best_loss == mloss['total']:
os.system('cp ' + latest + ' ' + best)
2019-04-02 12:07:14 +00:00
# Save backup weights every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
os.system('cp ' + latest + ' ' + weights + 'backup%g.pt' % epoch)
2018-08-26 08:51:39 +00:00
2018-11-14 15:14:41 +00:00
# Calculate mAP
2019-02-10 20:10:50 +00:00
with torch.no_grad():
results = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size, model=model)
2018-11-14 15:14:41 +00:00
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 3 % results + '\n') # append P, R, mAP
2018-11-14 15:14:41 +00:00
2018-08-26 08:51:39 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=270, help='number of epochs')
2019-03-21 10:09:54 +00:00
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
2019-03-19 08:38:32 +00:00
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
2019-02-21 19:16:58 +00:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
2019-02-11 21:44:25 +00:00
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
2018-12-10 12:19:13 +00:00
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
parser.add_argument('--resume', action='store_true', help='resume training flag')
2019-03-21 22:41:43 +00:00
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:9999', type=str, help='distributed training init method')
parser.add_argument('--rank', default=0, type=int, help='distributed training node rank')
parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training')
parser.add_argument('--backend', default='nccl', type=str, help='distributed backend')
opt = parser.parse_args()
print(opt, end='\n\n')
init_seeds()
train(
opt.cfg,
2019-02-08 21:43:05 +00:00
opt.data_cfg,
img_size=opt.img_size,
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
2019-03-19 08:38:32 +00:00
accumulate=opt.accumulate,
multi_scale=opt.multi_scale,
2019-03-21 12:48:40 +00:00
num_workers=opt.num_workers
)