2019-02-13 21:15:30 +00:00
< table style = "width:100%" >
< tr >
2019-04-15 12:45:43 +00:00
< td >
2019-07-21 12:28:02 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/61591130-f7beea00-abc2-11e9-9dc0-d6abcf41d713.jpg" >
2019-04-15 12:45:43 +00:00
< / td >
< td align = "center" >
< a href = "https://www.ultralytics.com" target = "_blank" >
2019-07-28 13:57:01 +00:00
< img src = "https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width = "160" > < / a >
2019-07-21 12:28:02 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/61591093-2b4d4480-abc2-11e9-8b46-d88eb1dabba1.jpg" >
< a href = "https://itunes.apple.com/app/id1452689527" target = "_blank" >
2019-04-15 12:45:43 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width = "180" > < / a >
< / td >
< td >
2019-07-21 12:28:02 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/61591100-55066b80-abc2-11e9-9647-52c0e045b288.jpg" >
2019-04-15 12:45:43 +00:00
< / td >
2019-02-13 21:15:30 +00:00
< / tr >
< / table >
2019-02-13 21:01:58 +00:00
2019-04-26 10:01:43 +00:00
# Introduction
2019-08-19 12:52:53 +00:00
This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license** . For more information please visit https://www.ultralytics.com.
2019-04-26 10:01:43 +00:00
2018-08-26 08:51:39 +00:00
# Description
2019-03-28 12:46:23 +00:00
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.
2018-08-26 08:51:39 +00:00
# Requirements
2018-11-27 17:14:48 +00:00
Python 3.7 or later with the following `pip3 install -U -r requirements.txt` packages:
2018-08-26 08:51:39 +00:00
- `numpy`
2019-05-29 00:02:41 +00:00
- `torch >= 1.1.0`
2018-08-26 08:51:39 +00:00
- `opencv-python`
2019-03-25 13:59:38 +00:00
- `tqdm`
2018-08-26 08:51:39 +00:00
2019-03-05 15:23:33 +00:00
# Tutorials
2019-03-30 17:45:04 +00:00
* [GCP Quickstart ](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart )
2019-03-05 15:23:33 +00:00
* [Transfer Learning ](https://github.com/ultralytics/yolov3/wiki/Example:-Transfer-Learning )
* [Train Single Image ](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Image )
* [Train Single Class ](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class )
* [Train Custom Data ](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data )
2019-05-28 14:14:37 +00:00
# Jupyter Notebook
2019-07-26 17:13:40 +00:00
Our Jupyter [notebook ](https://colab.research.google.com/github/ultralytics/yolov3/blob/master/examples.ipynb ) provides quick training, inference and testing examples.
2019-05-28 14:14:37 +00:00
2018-08-26 09:05:13 +00:00
# Training
2018-08-26 08:51:39 +00:00
2019-08-01 20:40:18 +00:00
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco_dataset.sh` . Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
2018-09-01 16:35:28 +00:00
2019-07-15 15:54:31 +00:00
**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt` .
2018-09-01 16:35:28 +00:00
2019-08-01 20:40:18 +00:00
**Plot Training:** `from utils import utils; utils.plot_results()` plots training results from `coco_16img.data` , `coco_64img.data` , 2 example datasets available in the `data/` folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.
2019-09-09 19:33:54 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/63258271-fe9d5300-c27b-11e9-9a15-95038daf4438.png" width = "900" >
2018-09-01 11:34:05 +00:00
2018-09-01 11:43:07 +00:00
## Image Augmentation
2018-09-01 11:34:05 +00:00
2018-09-01 16:57:18 +00:00
`datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.
2018-09-01 11:41:34 +00:00
Augmentation | Description
--- | ---
2018-12-28 18:23:35 +00:00
Translation | +/- 10% (vertical and horizontal)
2018-09-01 12:04:42 +00:00
Rotation | +/- 5 degrees
2018-12-28 18:23:35 +00:00
Shear | +/- 2 degrees (vertical and horizontal)
Scale | +/- 10%
2018-09-01 12:10:06 +00:00
Reflection | 50% probability (horizontal-only)
2018-09-01 12:04:42 +00:00
H**S**V Saturation | +/- 50%
HS**V** Intensity | +/- 50%
2018-09-01 11:34:05 +00:00
2019-10-15 23:32:07 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/66699231-27beea80-ece5-11e9-9cad-bdf9d82c500a.jpg" width = "900" >
2018-08-26 08:51:39 +00:00
2019-03-20 11:35:39 +00:00
## Speed
https://cloud.google.com/deep-learning-vm/
2019-03-25 13:59:38 +00:00
**Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory)
2019-03-20 11:35:39 +00:00
**CPU platform:** Intel Skylake
2019-08-05 00:55:03 +00:00
**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with [Nvidia Apex ](https://github.com/NVIDIA/apex ) FP16/32
2019-03-20 11:35:39 +00:00
**HDD:** 100 GB SSD
2019-11-30 23:32:39 +00:00
**Dataset:** COCO train 2014 (117,263 images)
**Model:** `yolov3-spp.cfg`
2019-03-25 13:59:38 +00:00
2019-08-05 00:55:03 +00:00
GPUs | `batch_size` | images/sec | epoch time | epoch cost
2019-03-25 13:59:38 +00:00
--- |---| --- | --- | ---
2019-08-05 00:55:03 +00:00
K80 | 64 (32x2) | 11 | 175 min | $0.58
T4 | 64 (32x2) | 40 | 49 min | $0.29
T4 x2 | 64 (64x1) | 61 | 32 min | $0.36
V100 | 64 (32x2) | 115 | 17 min | $0.24
2019-08-05 16:06:01 +00:00
V100 x2 | 64 (64x1) | 150 | 13 min | $0.36
2019-09-11 20:57:56 +00:00
2080Ti | 64 (32x2) | 81 | 24 min | -
2080Ti x2 | 64 (64x1) | 140 | 14 min | -
2019-03-20 11:35:39 +00:00
2018-08-26 09:05:13 +00:00
# Inference
2019-02-11 13:13:27 +00:00
2019-08-31 18:34:14 +00:00
`detect.py` runs inference on any sources:
```bash
python3 detect.py --source ...
```
2019-08-31 18:35:21 +00:00
- Image: `--source file.jpg`
- Video: `--source file.mp4`
2019-08-31 18:34:14 +00:00
- Directory: `--source dir/`
- Webcam: `--source 0`
- RTSP stream: `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa`
- HTTP stream: `--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg`
To run a specific models:
2018-12-22 12:05:52 +00:00
2019-11-30 23:33:10 +00:00
**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.weights`
2019-08-31 18:40:27 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width = "500" >
2018-12-22 12:05:52 +00:00
2019-11-30 23:33:10 +00:00
**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.weights`
2019-08-31 18:40:27 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width = "500" >
2019-03-21 11:00:24 +00:00
2019-11-30 23:33:10 +00:00
**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.weights`
2019-08-31 18:40:27 +00:00
< img src = "https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width = "500" >
2019-02-11 13:11:24 +00:00
2018-12-22 11:49:55 +00:00
# Pretrained Weights
2018-12-22 11:58:59 +00:00
2019-11-23 00:06:16 +00:00
Download from: [https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0 ](https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0 )
2018-09-01 16:48:53 +00:00
2019-04-23 15:05:42 +00:00
## Darknet Conversion
```bash
2019-10-15 23:32:07 +00:00
$ git clone https://github.com/ultralytics/yolov3 & & cd yolov3
2019-04-23 15:05:42 +00:00
# convert darknet cfg/weights to pytorch model
2019-10-15 23:32:07 +00:00
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
2019-04-23 15:05:42 +00:00
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'
# convert cfg/pytorch model to darknet weights
2019-10-15 23:32:07 +00:00
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
2019-04-23 15:05:42 +00:00
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'
```
2019-03-20 11:26:46 +00:00
# mAP
2019-07-20 15:31:21 +00:00
- `test.py --weights weights/yolov3.weights` tests official YOLOv3 weights.
2019-11-26 22:34:47 +00:00
- `test.py --weights weights/last.pt` tests latest checkpoint.
2019-11-28 00:59:46 +00:00
- mAPs on COCO2014 using pycocotools.
2019-11-28 19:05:13 +00:00
- mAP@0.5 run at `--nms-thres 0.5` , mAP@0.5...0.95 run at `--nms-thres 0.7` .
2019-11-28 00:59:46 +00:00
- YOLOv3-SPP ultralytics is `ultralytics68.pt` with `yolov3-spp.cfg` .
- Darknet results published in https://arxiv.org/abs/1804.02767.
2019-03-30 17:45:04 +00:00
2019-11-30 23:34:57 +00:00
< i > < / i > |Size |COCO mAP< br > @0.5...0.95 |COCO mAP< br > @0.5
2019-11-26 22:59:13 +00:00
--- | --- | --- | ---
2019-12-01 04:47:14 +00:00
YOLOv3-tiny< br > YOLOv3< br > YOLOv3-SPP< br > **YOLOv3-SPP ultralytics** |320 |14.0< br > 28.7< br > 30.5< br > **35.4** |29.1< br > 51.8< br > 52.3< br > **54.3**
YOLOv3-tiny< br > YOLOv3< br > YOLOv3-SPP< br > **YOLOv3-SPP ultralytics** |416 |16.0< br > 31.2< br > 33.9< br > **39.0** |33.0< br > 55.4< br > 56.9< br > **59.2**
YOLOv3-tiny< br > YOLOv3< br > YOLOv3-SPP< br > **YOLOv3-SPP ultralytics** |512 |16.6< br > 32.7< br > 35.6< br > **40.3** |34.9< br > 57.7< br > 59.5< br > **60.6**
2019-12-01 04:48:49 +00:00
YOLOv3-tiny< br > YOLOv3< br > YOLOv3-SPP< br > **YOLOv3-SPP ultralytics** |608 |16.6< br > 33.1< br > 37.0< br > **40.9** |35.4< br > 58.2< br > 60.7< br > **60.9**
2019-11-28 00:52:33 +00:00
2019-08-31 18:34:14 +00:00
```bash
2019-12-03 20:50:04 +00:00
$ python3 test.py --save-json --img-size 608 --nms-thres 0.5 --weights ultralytics68.pt
2019-12-01 04:47:14 +00:00
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', device='1', img_size=608, iou_thres=0.5, nms_thres=0.7, save_json=True, weights='ultralytics68.pt')
Using CUDA device0 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
Class Images Targets P R mAP@0.5 F1: 100%|███████████████████████████████████████████████████████████████████████████████████| 313/313 [09:46< 00:00 , 1 . 09it / s ]
2019-12-03 20:50:04 +00:00
all 5e+03 3.58e+04 0.0823 0.798 0.595 0.145
person 5e+03 1.09e+04 0.0999 0.903 0.771 0.18
bicycle 5e+03 316 0.0491 0.782 0.56 0.0925
car 5e+03 1.67e+03 0.0552 0.845 0.646 0.104
motorcycle 5e+03 391 0.11 0.847 0.704 0.194
airplane 5e+03 131 0.099 0.947 0.878 0.179
bus 5e+03 261 0.142 0.874 0.825 0.244
train 5e+03 212 0.152 0.863 0.806 0.258
truck 5e+03 352 0.0849 0.682 0.514 0.151
boat 5e+03 475 0.0498 0.787 0.504 0.0937
traffic light 5e+03 516 0.0304 0.752 0.516 0.0584
fire hydrant 5e+03 83 0.144 0.916 0.882 0.248
stop sign 5e+03 84 0.0833 0.917 0.809 0.153
parking meter 5e+03 59 0.0607 0.695 0.611 0.112
bench 5e+03 473 0.0294 0.685 0.363 0.0564
bird 5e+03 469 0.0521 0.716 0.524 0.0972
cat 5e+03 195 0.252 0.908 0.78 0.395
dog 5e+03 223 0.192 0.883 0.829 0.315
horse 5e+03 305 0.121 0.911 0.843 0.214
sheep 5e+03 321 0.114 0.854 0.724 0.201
cow 5e+03 384 0.105 0.849 0.695 0.187
elephant 5e+03 284 0.184 0.944 0.912 0.308
bear 5e+03 53 0.358 0.925 0.875 0.516
zebra 5e+03 277 0.176 0.935 0.858 0.297
giraffe 5e+03 170 0.171 0.959 0.892 0.29
backpack 5e+03 384 0.0426 0.708 0.392 0.0803
umbrella 5e+03 392 0.0672 0.878 0.65 0.125
handbag 5e+03 483 0.0238 0.629 0.242 0.0458
tie 5e+03 297 0.0419 0.805 0.599 0.0797
suitcase 5e+03 310 0.0823 0.855 0.628 0.15
frisbee 5e+03 109 0.126 0.872 0.796 0.221
skis 5e+03 282 0.0473 0.748 0.454 0.089
snowboard 5e+03 92 0.0579 0.804 0.559 0.108
sports ball 5e+03 236 0.057 0.733 0.622 0.106
kite 5e+03 399 0.087 0.852 0.645 0.158
baseball bat 5e+03 125 0.0496 0.776 0.603 0.0932
baseball glove 5e+03 139 0.0511 0.734 0.563 0.0956
skateboard 5e+03 218 0.0655 0.844 0.73 0.122
surfboard 5e+03 266 0.0709 0.827 0.651 0.131
tennis racket 5e+03 183 0.0694 0.858 0.759 0.128
bottle 5e+03 966 0.0484 0.812 0.513 0.0914
wine glass 5e+03 366 0.0735 0.738 0.543 0.134
cup 5e+03 897 0.0637 0.788 0.538 0.118
fork 5e+03 234 0.0411 0.662 0.487 0.0774
knife 5e+03 291 0.0334 0.557 0.292 0.0631
spoon 5e+03 253 0.0281 0.621 0.307 0.0537
bowl 5e+03 620 0.0624 0.795 0.514 0.116
banana 5e+03 371 0.052 0.83 0.41 0.0979
apple 5e+03 158 0.0293 0.741 0.262 0.0564
sandwich 5e+03 160 0.0913 0.725 0.522 0.162
orange 5e+03 189 0.0382 0.688 0.32 0.0723
broccoli 5e+03 332 0.0513 0.88 0.445 0.097
carrot 5e+03 346 0.0398 0.766 0.362 0.0757
hot dog 5e+03 164 0.0958 0.646 0.494 0.167
pizza 5e+03 224 0.0886 0.875 0.699 0.161
donut 5e+03 237 0.0925 0.827 0.64 0.166
cake 5e+03 241 0.0658 0.71 0.539 0.12
chair 5e+03 1.62e+03 0.0432 0.793 0.489 0.0819
couch 5e+03 236 0.118 0.801 0.584 0.205
potted plant 5e+03 431 0.0373 0.852 0.505 0.0714
bed 5e+03 195 0.149 0.846 0.693 0.253
dining table 5e+03 634 0.0546 0.82 0.49 0.102
toilet 5e+03 179 0.161 0.95 0.81 0.275
tv 5e+03 257 0.0922 0.903 0.79 0.167
laptop 5e+03 237 0.127 0.869 0.744 0.222
mouse 5e+03 95 0.0648 0.863 0.732 0.12
remote 5e+03 241 0.0436 0.788 0.535 0.0827
keyboard 5e+03 117 0.0668 0.923 0.755 0.125
cell phone 5e+03 291 0.0364 0.704 0.436 0.0692
microwave 5e+03 88 0.154 0.841 0.743 0.261
oven 5e+03 142 0.0618 0.803 0.576 0.115
toaster 5e+03 11 0.0565 0.636 0.191 0.104
sink 5e+03 211 0.0439 0.853 0.544 0.0835
refrigerator 5e+03 107 0.0791 0.907 0.742 0.145
book 5e+03 1.08e+03 0.0399 0.667 0.233 0.0753
clock 5e+03 292 0.0542 0.836 0.733 0.102
vase 5e+03 353 0.0675 0.799 0.591 0.125
scissors 5e+03 56 0.0397 0.75 0.461 0.0755
teddy bear 5e+03 245 0.0995 0.882 0.669 0.179
hair drier 5e+03 11 0.00508 0.0909 0.0475 0.00962
toothbrush 5e+03 77 0.0371 0.74 0.418 0.0706
2019-12-01 04:47:14 +00:00
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.40882
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.60026
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.44551
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.24343
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.45024
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.51362
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.32644
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.53629
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.59343
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.42207
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.63985
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.70688
2019-03-20 11:26:46 +00:00
```
2018-08-26 08:51:39 +00:00
2019-04-03 10:42:40 +00:00
# Citation
[![DOI ](https://zenodo.org/badge/146165888.svg )](https://zenodo.org/badge/latestdoi/146165888)
2018-08-26 08:51:39 +00:00
# Contact
2019-04-04 15:34:11 +00:00
Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.