131 lines
5.4 KiB
Python
131 lines
5.4 KiB
Python
|
import argparse
|
||
|
|
||
|
from models import *
|
||
|
from utils.datasets import *
|
||
|
from utils.utils import *
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--epochs', type=int, default=200, help='number of epochs')
|
||
|
parser.add_argument('--batch_size', type=int, default=32, help='size of each image batch')
|
||
|
parser.add_argument('--model_config_path', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
||
|
parser.add_argument('--data_config_path', type=str, default='cfg/coco.data', help='path to data config file')
|
||
|
parser.add_argument('--weights_path', type=str, default='checkpoints/yolov3.weights', help='path to weights file')
|
||
|
parser.add_argument('--class_path', type=str, default='data/coco.names', help='path to class label file')
|
||
|
parser.add_argument('--iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
||
|
parser.add_argument('--conf_thres', type=float, default=0.5, help='object confidence threshold')
|
||
|
parser.add_argument('--nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
||
|
parser.add_argument('--n_cpu', type=int, default=0, help='number of cpu threads to use during batch generation')
|
||
|
parser.add_argument('--img_size', type=int, default=416, help='size of each image dimension')
|
||
|
parser.add_argument('--use_cuda', type=bool, default=True, help='whether to use cuda if available')
|
||
|
opt = parser.parse_args()
|
||
|
print(opt)
|
||
|
|
||
|
cuda = torch.cuda.is_available() and opt.use_cuda
|
||
|
device = torch.device('cuda:0' if cuda else 'cpu')
|
||
|
|
||
|
# Get data configuration
|
||
|
data_config = parse_data_config(opt.data_config_path)
|
||
|
test_path = data_config['valid']
|
||
|
num_classes = int(data_config['classes'])
|
||
|
|
||
|
# Initiate model
|
||
|
model = Darknet(opt.model_config_path, opt.img_size)
|
||
|
|
||
|
# Load weights
|
||
|
weights_path = 'checkpoints/yolov3.pt'
|
||
|
if weights_path.endswith('.weights'): # darknet format
|
||
|
load_weights(model, weights_path)
|
||
|
elif weights_path.endswith('.pt'): # pytorch format
|
||
|
checkpoint = torch.load(weights_path, map_location='cpu')
|
||
|
model.load_state_dict(checkpoint['model'])
|
||
|
del checkpoint
|
||
|
|
||
|
model.to(device).eval()
|
||
|
|
||
|
# Get dataloader
|
||
|
# dataset = ListDataset(test_path)
|
||
|
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
|
||
|
dataloader = ListDataset(test_path, batch_size=opt.batch_size, img_size=opt.img_size)
|
||
|
|
||
|
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
|
||
|
|
||
|
n_gt = 0
|
||
|
correct = 0
|
||
|
|
||
|
print('Compute mAP...')
|
||
|
|
||
|
outputs = []
|
||
|
targets = None
|
||
|
APs = []
|
||
|
for batch_i, (imgs, targets) in enumerate(dataloader):
|
||
|
imgs = imgs.to(device)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
output = model(imgs)
|
||
|
output = non_max_suppression(output, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres)
|
||
|
|
||
|
# Compute average precision for each sample
|
||
|
for sample_i in range(len(targets)):
|
||
|
correct = []
|
||
|
|
||
|
# Get labels for sample where width is not zero (dummies)
|
||
|
annotations = targets[sample_i]
|
||
|
# Extract detections
|
||
|
detections = output[sample_i]
|
||
|
|
||
|
if detections is None:
|
||
|
# If there are no detections but there are annotations mask as zero AP
|
||
|
if annotations.size(0) != 0:
|
||
|
APs.append(0)
|
||
|
continue
|
||
|
|
||
|
# Get detections sorted by decreasing confidence scores
|
||
|
detections = detections[np.argsort(-detections[:, 4])]
|
||
|
|
||
|
# If no annotations add number of detections as incorrect
|
||
|
if annotations.size(0) == 0:
|
||
|
correct.extend([0 for _ in range(len(detections))])
|
||
|
else:
|
||
|
# Extract target boxes as (x1, y1, x2, y2)
|
||
|
target_boxes = torch.FloatTensor(annotations[:, 1:].shape)
|
||
|
target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2)
|
||
|
target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2)
|
||
|
target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2)
|
||
|
target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2)
|
||
|
target_boxes *= opt.img_size
|
||
|
|
||
|
detected = []
|
||
|
for *pred_bbox, conf, obj_conf, obj_pred in detections:
|
||
|
|
||
|
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
|
||
|
# Compute iou with target boxes
|
||
|
iou = bbox_iou(pred_bbox, target_boxes)
|
||
|
# Extract index of largest overlap
|
||
|
best_i = np.argmax(iou)
|
||
|
# If overlap exceeds threshold and classification is correct mark as correct
|
||
|
if iou[best_i] > opt.iou_thres and obj_pred == annotations[best_i, 0] and best_i not in detected:
|
||
|
correct.append(1)
|
||
|
detected.append(best_i)
|
||
|
else:
|
||
|
correct.append(0)
|
||
|
|
||
|
# Extract true and false positives
|
||
|
true_positives = np.array(correct)
|
||
|
false_positives = 1 - true_positives
|
||
|
|
||
|
# Compute cumulative false positives and true positives
|
||
|
false_positives = np.cumsum(false_positives)
|
||
|
true_positives = np.cumsum(true_positives)
|
||
|
|
||
|
# Compute recall and precision at all ranks
|
||
|
recall = true_positives / annotations.size(0) if annotations.size(0) else true_positives
|
||
|
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
|
||
|
|
||
|
# Compute average precision
|
||
|
AP = compute_ap(recall, precision)
|
||
|
APs.append(AP)
|
||
|
|
||
|
print("+ Sample [%d/%d] AP: %.4f (%.4f)" % (len(APs), len(dataloader) * opt.batch_size, AP, np.mean(APs)))
|
||
|
|
||
|
print("Mean Average Precision: %.4f" % np.mean(APs))
|