2018-08-26 08:51:39 +00:00
|
|
|
import random
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
# set printoptions
|
|
|
|
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
|
|
|
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{11.5g}'.format}) # format short g, %precision=5
|
|
|
|
|
|
|
|
|
|
|
|
def load_classes(path):
|
|
|
|
"""
|
|
|
|
Loads class labels at 'path'
|
|
|
|
"""
|
|
|
|
fp = open(path, "r")
|
|
|
|
names = fp.read().split("\n")[:-1]
|
|
|
|
return names
|
|
|
|
|
|
|
|
|
|
|
|
def modelinfo(model):
|
|
|
|
nparams = sum(x.numel() for x in model.parameters())
|
|
|
|
ngradients = sum(x.numel() for x in model.parameters() if x.requires_grad)
|
|
|
|
print('\n%4s %70s %9s %12s %20s %12s %12s' % ('', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
|
|
|
for i, (name, p) in enumerate(model.named_parameters()):
|
|
|
|
name = name.replace('module_list.', '')
|
|
|
|
print('%4g %70s %9s %12g %20s %12g %12g' % (
|
|
|
|
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
|
|
|
print('\n%g layers, %g parameters, %g gradients' % (i + 1, nparams, ngradients))
|
|
|
|
|
|
|
|
|
|
|
|
def xview_class_weights(indices): # weights of each class in the training set, normalized to mu = 1
|
|
|
|
weights = 1 / torch.FloatTensor(
|
|
|
|
[74, 364, 713, 71, 2925, 209767, 6925, 1101, 3612, 12134, 5871, 3640, 860, 4062, 895, 149, 174, 17, 1624, 1846,
|
|
|
|
125, 122, 124, 662, 1452, 697, 222, 190, 786, 200, 450, 295, 79, 205, 156, 181, 70, 64, 337, 1352, 336, 78,
|
|
|
|
628, 841, 287, 83, 702, 1177, 313865, 195, 1081, 882, 1059, 4175, 123, 1700, 2317, 1579, 368, 85])
|
|
|
|
weights /= weights.sum()
|
|
|
|
return weights[indices]
|
|
|
|
|
|
|
|
|
|
|
|
def plot_one_box(x, im, color=None, label=None, line_thickness=None):
|
|
|
|
tl = line_thickness or round(0.003 * max(im.shape[0:2])) # line thickness
|
|
|
|
color = color or [random.randint(0, 255) for _ in range(3)]
|
|
|
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
|
|
|
cv2.rectangle(im, c1, c2, color, thickness=tl)
|
|
|
|
if label:
|
|
|
|
tf = max(tl - 1, 1) # font thickness
|
|
|
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
|
|
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
|
|
|
cv2.rectangle(im, c1, c2, color, -1) # filled
|
|
|
|
cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
|
|
|
|
|
|
|
|
|
|
|
def weights_init_normal(m):
|
|
|
|
classname = m.__class__.__name__
|
|
|
|
if classname.find('Conv') != -1:
|
|
|
|
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
|
|
|
|
elif classname.find('BatchNorm2d') != -1:
|
|
|
|
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
|
|
|
|
torch.nn.init.constant_(m.bias.data, 0.0)
|
|
|
|
|
|
|
|
|
|
|
|
def xyxy2xywh(box):
|
|
|
|
xywh = np.zeros(box.shape)
|
|
|
|
xywh[:, 0] = (box[:, 0] + box[:, 2]) / 2
|
|
|
|
xywh[:, 1] = (box[:, 1] + box[:, 3]) / 2
|
|
|
|
xywh[:, 2] = box[:, 2] - box[:, 0]
|
|
|
|
xywh[:, 3] = box[:, 3] - box[:, 1]
|
|
|
|
return xywh
|
|
|
|
|
|
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
|
|
""" Compute the average precision, given the recall and precision curves.
|
|
|
|
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
|
|
|
|
# Arguments
|
|
|
|
recall: The recall curve (list).
|
|
|
|
precision: The precision curve (list).
|
|
|
|
# Returns
|
|
|
|
The average precision as computed in py-faster-rcnn.
|
|
|
|
"""
|
|
|
|
# correct AP calculation
|
|
|
|
# first append sentinel values at the end
|
|
|
|
mrec = np.concatenate(([0.], recall, [1.]))
|
|
|
|
mpre = np.concatenate(([0.], precision, [0.]))
|
|
|
|
|
|
|
|
# compute the precision envelope
|
|
|
|
for i in range(mpre.size - 1, 0, -1):
|
|
|
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
|
|
|
|
|
|
|
# to calculate area under PR curve, look for points
|
|
|
|
# where X axis (recall) changes value
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0]
|
|
|
|
|
|
|
|
# and sum (\Delta recall) * prec
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
|
|
|
return ap
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True):
|
|
|
|
# if len(box1.shape) == 1:
|
|
|
|
# box1 = box1.reshape(1, 4)
|
|
|
|
|
|
|
|
"""
|
|
|
|
Returns the IoU of two bounding boxes
|
|
|
|
"""
|
|
|
|
if x1y1x2y2:
|
|
|
|
# Get the coordinates of bounding boxes
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
|
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
|
|
|
|
else:
|
|
|
|
# Transform from center and width to exact coordinates
|
|
|
|
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
|
|
|
|
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
|
|
|
|
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
|
|
|
|
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
|
|
|
|
|
|
|
|
# get the corrdinates of the intersection rectangle
|
|
|
|
inter_rect_x1 = torch.max(b1_x1, b2_x1)
|
|
|
|
inter_rect_y1 = torch.max(b1_y1, b2_y1)
|
|
|
|
inter_rect_x2 = torch.min(b1_x2, b2_x2)
|
|
|
|
inter_rect_y2 = torch.min(b1_y2, b2_y2)
|
|
|
|
# Intersection area
|
|
|
|
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
|
|
|
|
# Union Area
|
|
|
|
b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
|
|
|
|
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
|
|
|
|
|
|
|
|
return inter_area / (b1_area + b2_area - inter_area + 1e-16)
|
|
|
|
|
|
|
|
|
|
|
|
def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG, requestPrecision):
|
|
|
|
"""
|
|
|
|
returns nGT, nCorrect, tx, ty, tw, th, tconf, tcls
|
|
|
|
"""
|
|
|
|
nB = len(target) # target.shape[0]
|
|
|
|
nT = [len(x) for x in target] # torch.argmin(target[:, :, 4], 1) # targets per image
|
|
|
|
tx = torch.zeros(nB, nA, nG, nG) # batch size (4), number of anchors (3), number of grid points (13)
|
|
|
|
ty = torch.zeros(nB, nA, nG, nG)
|
|
|
|
tw = torch.zeros(nB, nA, nG, nG)
|
|
|
|
th = torch.zeros(nB, nA, nG, nG)
|
|
|
|
tconf = torch.ByteTensor(nB, nA, nG, nG).fill_(0)
|
|
|
|
tcls = torch.ByteTensor(nB, nA, nG, nG, nC).fill_(0) # nC = number of classes
|
|
|
|
TP = torch.ByteTensor(nB, max(nT)).fill_(0)
|
|
|
|
FP = torch.ByteTensor(nB, max(nT)).fill_(0)
|
|
|
|
FN = torch.ByteTensor(nB, max(nT)).fill_(0)
|
|
|
|
TC = torch.ShortTensor(nB, max(nT)).fill_(-1) # target category
|
|
|
|
|
|
|
|
for b in range(nB):
|
|
|
|
nTb = nT[b] # number of targets
|
|
|
|
if nTb == 0:
|
|
|
|
continue
|
|
|
|
t = target[b]
|
|
|
|
FN[b, :nTb] = 1
|
|
|
|
|
|
|
|
# Convert to position relative to box
|
|
|
|
TC[b, :nTb], gx, gy, gw, gh = t[:, 0].long(), t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG
|
|
|
|
# Get grid box indices and prevent overflows (i.e. 13.01 on 13 anchors)
|
|
|
|
gi = torch.clamp(gx.long(), min=0, max=nG - 1)
|
|
|
|
gj = torch.clamp(gy.long(), min=0, max=nG - 1)
|
|
|
|
|
|
|
|
# iou of targets-anchors (using wh only)
|
|
|
|
box1 = t[:, 3:5] * nG
|
|
|
|
# box2 = anchor_grid_wh[:, gj, gi]
|
|
|
|
box2 = anchor_wh.unsqueeze(1).repeat(1, nTb, 1)
|
|
|
|
inter_area = torch.min(box1, box2).prod(2)
|
|
|
|
iou_anch = inter_area / (gw * gh + box2.prod(2) - inter_area + 1e-16)
|
|
|
|
|
|
|
|
# Select best iou_pred and anchor
|
|
|
|
iou_anch_best, a = iou_anch.max(0) # best anchor [0-2] for each target
|
|
|
|
|
|
|
|
# Two targets can not claim the same anchor
|
|
|
|
if nTb > 1:
|
|
|
|
iou_order = np.argsort(-iou_anch_best) # best to worst
|
|
|
|
# u = torch.cat((gi, gj, a), 0).view(3, -1).numpy()
|
|
|
|
# _, first_unique = np.unique(u[:, iou_order], axis=1, return_index=True) # first unique indices
|
|
|
|
u = gi.float() * 0.4361538773074043 + gj.float() * 0.28012496588736746 + a.float() * 0.6627147212460307
|
|
|
|
_, first_unique = np.unique(u[iou_order], return_index=True) # first unique indices
|
|
|
|
# print(((np.sort(first_unique) - np.sort(first_unique2)) ** 2).sum())
|
|
|
|
i = iou_order[first_unique]
|
|
|
|
# best anchor must share significant commonality (iou) with target
|
|
|
|
i = i[iou_anch_best[i] > 0.10]
|
|
|
|
if len(i) == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
a, gj, gi, t = a[i], gj[i], gi[i], t[i]
|
|
|
|
if len(t.shape) == 1:
|
|
|
|
t = t.view(1, 5)
|
|
|
|
else:
|
|
|
|
if iou_anch_best < 0.10:
|
|
|
|
continue
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
tc, gx, gy, gw, gh = t[:, 0].long(), t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG
|
|
|
|
|
|
|
|
# Coordinates
|
|
|
|
tx[b, a, gj, gi] = gx - gi.float()
|
|
|
|
ty[b, a, gj, gi] = gy - gj.float()
|
|
|
|
# Width and height (sqrt method)
|
|
|
|
# tw[b, a, gj, gi] = torch.sqrt(gw / anchor_wh[a, 0]) / 2
|
|
|
|
# th[b, a, gj, gi] = torch.sqrt(gh / anchor_wh[a, 1]) / 2
|
|
|
|
# Width and height (yolov3 method)
|
|
|
|
tw[b, a, gj, gi] = torch.log(gw / anchor_wh[a, 0] + 1e-16)
|
|
|
|
th[b, a, gj, gi] = torch.log(gh / anchor_wh[a, 1] + 1e-16)
|
|
|
|
|
|
|
|
# One-hot encoding of label
|
|
|
|
tcls[b, a, gj, gi, tc] = 1
|
|
|
|
tconf[b, a, gj, gi] = 1
|
|
|
|
|
|
|
|
if requestPrecision:
|
|
|
|
# predicted classes and confidence
|
|
|
|
tb = torch.cat((gx - gw / 2, gy - gh / 2, gx + gw / 2, gy + gh / 2)).view(4, -1).t() # target boxes
|
|
|
|
pcls = torch.argmax(pred_cls[b, a, gj, gi], 1).cpu()
|
|
|
|
pconf = torch.sigmoid(pred_conf[b, a, gj, gi]).cpu()
|
|
|
|
iou_pred = bbox_iou(tb, pred_boxes[b, a, gj, gi].cpu())
|
|
|
|
|
|
|
|
TP[b, i] = (pconf > 0.99) & (iou_pred > 0.5) & (pcls == tc)
|
|
|
|
FP[b, i] = (pconf > 0.99) & (TP[b, i] == 0) # coordinates or class are wrong
|
|
|
|
FN[b, i] = pconf <= 0.99 # confidence score is too low (set to zero)
|
|
|
|
|
|
|
|
return tx, ty, tw, th, tconf, tcls, TP, FP, FN, TC
|
|
|
|
|
|
|
|
|
|
|
|
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
|
|
|
prediction = prediction.cpu()
|
|
|
|
|
|
|
|
"""
|
|
|
|
Removes detections with lower object confidence score than 'conf_thres' and performs
|
|
|
|
Non-Maximum Suppression to further filter detections.
|
|
|
|
Returns detections with shape:
|
|
|
|
(x1, y1, x2, y2, object_conf, class_score, class_pred)
|
|
|
|
"""
|
|
|
|
|
|
|
|
output = [None for _ in range(len(prediction))]
|
|
|
|
for image_i, pred in enumerate(prediction):
|
|
|
|
# Filter out confidence scores below threshold
|
|
|
|
# Get score and class with highest confidence
|
|
|
|
|
|
|
|
# cross-class NMS
|
|
|
|
cross_class_nms = False
|
|
|
|
if cross_class_nms:
|
|
|
|
thresh = 0.85
|
|
|
|
a = pred.clone()
|
|
|
|
a = a[np.argsort(-a[:, 4])] # sort best to worst
|
|
|
|
radius = 30 # area to search for cross-class ious
|
|
|
|
for i in range(len(a)):
|
|
|
|
if i >= len(a) - 1:
|
|
|
|
break
|
|
|
|
|
|
|
|
close = (np.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (np.abs(a[i, 1] - a[i + 1:, 1]) < radius)
|
|
|
|
close = close.nonzero()
|
|
|
|
|
|
|
|
if len(close) > 0:
|
|
|
|
close = close + i + 1
|
|
|
|
iou = bbox_iou(a[i:i + 1, :4], a[close.squeeze(), :4].reshape(-1, 4), x1y1x2y2=False)
|
|
|
|
bad = close[iou > thresh]
|
|
|
|
|
|
|
|
if len(bad) > 0:
|
|
|
|
mask = torch.ones(len(a)).type(torch.ByteTensor)
|
|
|
|
mask[bad] = 0
|
|
|
|
a = a[mask]
|
|
|
|
pred = a
|
|
|
|
|
|
|
|
x, y, w, h = pred[:, 0].numpy(), pred[:, 1].numpy(), pred[:, 2].numpy(), pred[:, 3].numpy()
|
|
|
|
a = w * h # area
|
|
|
|
ar = w / (h + 1e-16) # aspect ratio
|
|
|
|
log_w, log_h, log_a, log_ar = np.log(w), np.log(h), np.log(a), np.log(ar)
|
|
|
|
|
|
|
|
# n = len(w)
|
|
|
|
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
|
|
|
|
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
|
|
|
|
# from scipy.stats import multivariate_normal
|
|
|
|
# for c in range(60):
|
|
|
|
# shape_likelihood[:, c] = multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
|
|
|
|
|
|
|
|
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
|
|
|
|
|
|
|
|
v = ((pred[:, 4] > conf_thres) & (class_prob > .3)).numpy()
|
|
|
|
v = v.nonzero()
|
|
|
|
|
|
|
|
pred = pred[v]
|
|
|
|
class_prob = class_prob[v]
|
|
|
|
class_pred = class_pred[v]
|
|
|
|
|
|
|
|
# If none are remaining => process next image
|
|
|
|
nP = pred.shape[0]
|
|
|
|
if not nP:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# From (center x, center y, width, height) to (x1, y1, x2, y2)
|
|
|
|
box_corner = pred.new(nP, 4)
|
|
|
|
xy = pred[:, 0:2]
|
|
|
|
wh = pred[:, 2:4] / 2
|
|
|
|
box_corner[:, 0:2] = xy - wh
|
|
|
|
box_corner[:, 2:4] = xy + wh
|
|
|
|
pred[:, :4] = box_corner
|
|
|
|
|
|
|
|
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred)
|
|
|
|
detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1)
|
|
|
|
# Iterate through all predicted classes
|
|
|
|
unique_labels = detections[:, -1].cpu().unique()
|
|
|
|
if prediction.is_cuda:
|
|
|
|
unique_labels = unique_labels.cuda()
|
|
|
|
|
|
|
|
nms_style = 'OR' # 'AND' or 'OR' (classical)
|
|
|
|
for c in unique_labels:
|
|
|
|
# Get the detections with the particular class
|
|
|
|
detections_class = detections[detections[:, -1] == c]
|
|
|
|
# Sort the detections by maximum objectness confidence
|
|
|
|
_, conf_sort_index = torch.sort(detections_class[:, 4], descending=True)
|
|
|
|
detections_class = detections_class[conf_sort_index]
|
|
|
|
# Perform non-maximum suppression
|
|
|
|
max_detections = []
|
|
|
|
|
|
|
|
if nms_style == 'OR': # Classical NMS
|
|
|
|
while detections_class.shape[0]:
|
|
|
|
# Get detection with highest confidence and save as max detection
|
|
|
|
max_detections.append(detections_class[0].unsqueeze(0))
|
|
|
|
# Stop if we're at the last detection
|
|
|
|
if len(detections_class) == 1:
|
|
|
|
break
|
|
|
|
# Get the IOUs for all boxes with lower confidence
|
|
|
|
ious = bbox_iou(max_detections[-1], detections_class[1:])
|
|
|
|
|
|
|
|
# Remove detections with IoU >= NMS threshold
|
|
|
|
detections_class = detections_class[1:][ious < nms_thres]
|
|
|
|
|
|
|
|
elif nms_style == 'AND': # 'AND'-style NMS, at least two boxes must share commonality to pass, single boxes erased
|
|
|
|
while detections_class.shape[0]:
|
|
|
|
if len(detections_class) == 1:
|
|
|
|
break
|
|
|
|
|
|
|
|
ious = bbox_iou(detections_class[:1], detections_class[1:])
|
|
|
|
|
|
|
|
if ious.max() > 0.5:
|
|
|
|
max_detections.append(detections_class[0].unsqueeze(0))
|
|
|
|
|
|
|
|
# Remove detections with IoU >= NMS threshold
|
|
|
|
detections_class = detections_class[1:][ious < nms_thres]
|
|
|
|
|
|
|
|
if len(max_detections) > 0:
|
|
|
|
max_detections = torch.cat(max_detections).data
|
|
|
|
# Add max detections to outputs
|
|
|
|
output[image_i] = max_detections if output[image_i] is None else torch.cat(
|
|
|
|
(output[image_i], max_detections))
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def strip_optimizer_from_checkpoint(filename='checkpoints/best.pt'):
|
|
|
|
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
|
|
|
|
import torch
|
|
|
|
a = torch.load(filename, map_location='cpu')
|
|
|
|
a['optimizer'] = []
|
|
|
|
torch.save(a, filename.replace('.pt', '_lite.pt'))
|
|
|
|
|
|
|
|
|
|
|
|
def plotResults():
|
|
|
|
# Plot YOLO training results file "results.txt"
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
2018-09-01 11:17:21 +00:00
|
|
|
plt.figure(figsize=(16, 8))
|
|
|
|
s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall']
|
|
|
|
for f in ('/Users/glennjocher/Downloads/results.txt',
|
|
|
|
''):
|
2018-08-26 08:51:39 +00:00
|
|
|
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 9, 10]).T
|
|
|
|
for i in range(9):
|
|
|
|
plt.subplot(2, 5, i + 1)
|
2018-08-26 17:38:14 +00:00
|
|
|
plt.plot(results[i, :], marker='.', label=f)
|
2018-08-26 08:51:39 +00:00
|
|
|
plt.title(s[i])
|
|
|
|
plt.legend()
|